Compare commits

...

10 Commits

Author SHA1 Message Date
dca4421674 add free memory command
add read and write nfc commands
fix function sending
2022-03-25 13:41:02 +01:00
58fe96f8b7 add support for mfrc proxyies 2022-03-21 21:22:18 +01:00
36cc688479 softspim: allow phase mode 2 (safe phase) 2022-03-15 22:41:06 +01:00
50d233fdf7 finish single item resend 2022-03-15 22:40:37 +01:00
cf7e3f8e6b serial: ajust rx buffer size 2022-03-15 22:40:07 +01:00
6d8baa50eb implement single item resend 2022-03-15 22:39:13 +01:00
97aa264b54 IRQ based tag polling 2022-03-10 22:25:35 +01:00
b01caeda28 change some parameters in softspim 2022-03-10 22:25:18 +01:00
64dae0435b change to new signelton method 2022-03-10 22:24:17 +01:00
071d13450d fix input shift register reading 2022-03-10 22:23:38 +01:00
27 changed files with 1027 additions and 225 deletions

View File

@ -17,7 +17,18 @@ set(PORT_SPEED "57600" CACHE STRING "Serial Port Speed")
set(PROGRAMMER "stk500v1" CACHE STRING "Programmer Type")
set(COMPILE_FLAGS "" CACHE STRING "Additional Compiler Flags")
set(SRC_FILES main.cpp serial.cpp train.cpp item.cpp turnout.cpp signal.cpp softspim.cpp nfcbord.cpp mfrc522.cpp)
set(SRC_FILES
main.cpp
serial.cpp
train.cpp
item.cpp
turnout.cpp
signal.cpp
softspim.cpp
nfcbord.cpp
mfrc522.cpp
placementnew.cpp
mfrcproxy.cpp)
# Compiler suite specification
set(CMAKE_C_COMPILER /usr/bin/avr-gcc)

10
defines.h Normal file
View File

@ -0,0 +1,10 @@
#pragma once
static constexpr int COMMAND_BUFFER_SIZE = 64;
static constexpr int SNPRINTF_BUFFER_SIZE = 128;
static constexpr int EPPROM_SIZE = 1024;
static constexpr int EEPROM_RESERVE = 32;
static constexpr int BLOCK = 4;
static constexpr int NFC_PORTS = 8;

View File

@ -22,6 +22,12 @@ public:
const unsigned char clk, const unsigned char serOut, const unsigned char parallelLoad):
_port(portReg), _pin(pinReg), _pinSerOut(serOut), _pinClk(clk), _pinParallelLoad(parallelLoad)
{
if constexpr(invert)
*_port &= ~(1<<_pinParallelLoad);
else
*_port |= (1<<_pinParallelLoad);
read();
}
bool getBit(unsigned char bit)
{
@ -34,13 +40,11 @@ public:
{
if constexpr(invert)
{
*_port &= ~(1<<_pinParallelLoad);
*_port |= (1<<_pinParallelLoad);
*_port &= ~(1<<_pinParallelLoad);
for(unsigned char i = 0; i < BITS; ++i)
{
*_port &= ~(1 << _pinClk);
bool value = *_pin & (1 << _pinSerOut);
if constexpr(invertInput)
value = !value;
@ -48,14 +52,13 @@ public:
data[i/8] |= (1<<(i%8));
else
data[i/8] &= ~(1<<(i%8));
*_port &= ~(1 << _pinClk);
*_port |= (1 << _pinClk);
}
}
else
{
*_port |= (1<<_pinParallelLoad);
*_port &= ~(1<<_pinParallelLoad);
*_port |= (1<<_pinParallelLoad);
for(unsigned char i = 0; i < BITS; ++i)
{
@ -69,6 +72,7 @@ public:
data[i/8] &= ~(1<<(i%8));
*_port &= ~(1 << _pinClk);
}
*_port |= (1<<_pinParallelLoad);
}
return data;
}

View File

@ -74,7 +74,7 @@ void Item::sendAddress(uint8_t address)
}
void Item::sendRawAddr(const uint8_t address, const uint16_t data)
void Item::sendRawAddr(const uint8_t address, const uint16_t data, bool single)
{
for(uint8_t j = 0; j < SEND_COUNT; j++)
{
@ -83,11 +83,13 @@ void Item::sendRawAddr(const uint8_t address, const uint16_t data)
{
sendBit(data & (1 << i));
}
if(single || SEND_COUNT == 1)
return;
_delay_ms(1);
}
}
void Item::sendRaw(const uint16_t data)
void Item::sendRaw(const uint16_t data, bool single)
{
sendRawAddr(_address, data);
sendRawAddr(_address, data, single);
}

4
item.h
View File

@ -40,8 +40,8 @@ public:
Item(const uint8_t address);
void sendRaw(const uint16_t data);
static void sendRawAddr(const uint8_t address, const uint16_t data);
void sendRaw(const uint16_t data, bool single = false);
static void sendRawAddr(const uint8_t address, const uint16_t data, bool single = false);
void setAddress(const uint8_t address);
uint8_t getAddress();

View File

@ -3,6 +3,7 @@
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <avr/interrupt.h>
#include "serial.h"
#include "writepin.h"
#include "train.h"
@ -22,7 +23,6 @@ char buffer[SNPRINTF_BUFFER_SIZE];
SVector<Train, 32> trains;
SVector<Turnout, 32> turnouts;
SVector<Signal, 32> signals;
NfcBoard nfcBoard;
bool autoff = true;
bool powerIsOn = true;
@ -127,6 +127,13 @@ void restore_state()
}
}
int freeRAM()
{
extern int __heap_start, *__brkval;
int v;
return (int) &v - (__brkval == 0 ? (int) &__heap_start: (int) __brkval);
}
inline static void printHelp(Serial* serial)
{
serial->write_p(PSTR("Available Commands: \n\
@ -145,13 +152,19 @@ inline static void printHelp(Serial* serial)
turnout [nn] delete : Delete Turnout\n\
signal add [address] [subaddress] [type] : Add a signal\n\
signal list : List signal\n\
signal [nn] set [status] : Set signal direction\n\
signal [nn] delete : Delete signal\n\
signal [nn] set [status] : Set signal status\n\
nfc probe : Detect newly added nfc reader\n\
nfc list : List nfc readers\n\
nfc debug : Enable nfc debug output\n\
nfc quiet : Disable nfc debug output\n\
nfc enable : Enable tag detection\n\
nfc disable : Disable tag detection\n\
stop : stop all trains\n\
power off : power off the rail\n\
power on : power on the rail\n\
power auto : power off the rail when no trains are moveing\n\
dump : prints epprom contence\n\
free : show amount of free ram\n\
erase : Erase epprom.\n"));
}
@ -253,7 +266,7 @@ void serialDispatch(Serial* serial)
{
token = strtok(NULL, " ");
if(token != NULL)
ret = nfcBoard.dispatch(token, serial);
ret = nfcBoard.dispatch(token);
}
else if(strncmp(token, "erase", 4) == 0)
{
@ -294,6 +307,13 @@ void serialDispatch(Serial* serial)
printHelp(serial);
ret = 0;
}
else if(strcmp(token, "free") == 0)
{
serial->write_p(PSTR("Free Ram: "));
serial->write(freeRAM());
serial->write_p(PSTR(" Bytes.\n"));
ret = 0;
}
else
{
serial->putChar('\"');
@ -347,26 +367,35 @@ int main()
sei();
Serial serial;
Serial* serial = Serial::getInstance();
serial.write_p(PSTR("TrainController v0.5 starting\n"));
serial->write_p(PSTR("TrainController v0.5 starting\n"));
uint8_t repeatCount = 0;
while(true)
{
if(resendEvent && (trains.count() || turnouts.count() || signals.count()))
{
timer0InterruptEnable(false);
if(itemToResend < trains.count())
trains[itemToResend].sendData();
trains[itemToResend].sendData(true);
else if(itemToResend < trains.count() + turnouts.count())
turnouts[itemToResend-trains.count()].sendData();
turnouts[itemToResend-trains.count()].sendData(true);
else if(itemToResend < trains.count() + turnouts.count()+signals.count())
signals[itemToResend-trains.count()-turnouts.count()].sendData();
itemToResend++;
if(trains.count()+turnouts.count()+signals.count() <= itemToResend)
itemToResend = 0;
signals[itemToResend-trains.count()-turnouts.count()].sendData(true);
resendEvent = false;
timer0InterruptEnable(true);
if(repeatCount == 0)
{
TCNT0 = 190;
repeatCount = 1;
}
else
{
itemToResend++;
if(trains.count()+turnouts.count()+signals.count() <= itemToResend)
itemToResend = 0;
repeatCount = 0;
}
}
if(autoff)
@ -381,7 +410,9 @@ int main()
Train::setOutput(Train::OFF);
}
}
serialDispatch(&serial);
serialDispatch(serial);
nfcBoard.poll(serial);
}
return 0;
}

View File

@ -1,6 +1,7 @@
#include "mfrc522.h"
Serial *Mfrc522::serial = nullptr;
uint8_t Mfrc522::reponseBuffer[Mfrc522::reponseBufferLen];
uint8_t Mfrc522::read(uint8_t addr)
{
@ -58,25 +59,34 @@ void Mfrc522::updateBit(uint8_t addr, uint8_t bit, bool value)
void (*_tagEnterdCb)(Mfrc522*, void*);
void* _userData;
Mfrc522::Mfrc522(SpiMaster* spi, ShiftReg<NFC_PORTS>* csReg, uint8_t csPin,
void (*tagEnterdCb)(Mfrc522*, void*), void* userData):
_csReg(csReg), _spi(spi), _csPin(csPin), _tagEnterdCb(tagEnterdCb), _userData(userData)
Mfrc522::Mfrc522(SpiMaster* spi, ShiftReg<NFC_PORTS>* csReg, uint8_t csPin):
_csReg(csReg), _spi(spi), _csPin(csPin)
{
reset();
}
void Mfrc522::reset()
{
write(CommandReg, SOFTRESET);
_delay_ms(100);
mode = MODE_IDLE;
irqDetect = false;
write(TModeReg, 0x80);
write(TPrescalerReg, 0xA9);
write(TReloadRegH, 0x03);
write(TReloadRegL, 0xE8);
write(TPrescalerReg, PRESCALLER);
write(TReloadRegH, POLL_TIMER >> 8);
write(TReloadRegL, POLL_TIMER & 0x0F);
write(ModWidthReg, 0x26);
write(RFCfgReg, 0b111 << 4); //set gain to 48dB
write(RFCfgReg, 0b01110100); //set gain to 48dB
write(TxAutoReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting
updateBit(RxModeReg, 3, true);
write(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4)
//write(DivIEnReg, 0b10010000); // enable MfinActIrq as push-pull
//write(ComIEnReg, 0b00100000); // enable Rx irq
write(ComIrqReg, 0b01111111);
write(ComIEnReg, 0); // invert irq pin (high is active)
write(DivIEnReg, 1 << 7); // enable MfinActIrq as push-pull
setRf(true);
}
@ -98,32 +108,17 @@ uint8_t Mfrc522::calculateCrc(uint8_t *data, uint8_t length, uint16_t *result)
return ERR;
write(CommandReg, IDLE);
if(serial)
{
serial->write_p(PSTR("Calculated CRC "));
serial->write((int)read(CRCResultRegL));
serial->putChar(' ');
serial->write((int)read(CRCResultRegH));
serial->putChar('\n');
}
*result = read(CRCResultRegL);
*result |= read(CRCResultRegH) << 8;
return 0;
}
uint8_t Mfrc522::commuicateWithTag(uint8_t command, uint8_t waitIrq,
uint8_t *sendData, uint8_t sendLen,
uint8_t *recvData, uint8_t *recvLen,
uint8_t validBits, uint8_t rxAlign,
uint8_t *rxValidBits)
void Mfrc522::setupTransceive(uint8_t *sendData, uint8_t sendLen, uint8_t validBits, uint8_t rxAlign)
{
write(CommandReg, IDLE);
write(ComIrqReg, 0b01111111); // clear irqs
write(FIFOLevelReg, 1 << 7); // Flush fifo Buffer;
write(FIFODataReg, sendData, sendLen); // Fill fifo
write(BitFramingReg, (rxAlign << 4) + validBits);
write(CommandReg, command); // Execute the command
write(CommandReg, TRANSCEIVE); // Execute the command
if(serial)
{
@ -140,14 +135,82 @@ uint8_t Mfrc522::commuicateWithTag(uint8_t command, uint8_t waitIrq,
serial->write((int)read(BitFramingReg));
serial->putChar('\n');
}
updateBit(BitFramingReg, 7, true);
}
uint8_t Mfrc522::transceiveAsync(void (*transceiveCb)(uint8_t, Mfrc522*, uint8_t*, uint8_t, void*), void* userData,
uint8_t *sendData, uint8_t sendLen, uint8_t validBits, uint8_t rxAlign)
{
if(mode != MODE_IDLE)
return BUSY;
mode = MODE_TRANSCEIVE;
if (command == TRANSCEIVE)
updateBit(BitFramingReg, 7, true);
_transceiveCb = transceiveCb;
_transceiveUserData = userData;
write(CommandReg, IDLE);
write(ComIrqReg, 0b01111111); // clear irqs
write(ComIEnReg, (1 << 5) | (1 << 0));
setupTransceive(sendData, sendLen, validBits, rxAlign);
return 0;
}
void Mfrc522::transceiveAsyncFinish(uint8_t irq)
{
write(ComIEnReg, 0); // disable irqs
if(irq & 1)
{
mode = MODE_IDLE;
_transceiveCb(TIMEOUT, this, nullptr, 0, _transceiveUserData);
return;
}
if(!_transceiveCb)
{
mode = MODE_IDLE;
updateBit(FIFOLevelReg, 7, true);
return;
}
uint8_t errorRegValue = read(ErrorReg);
if (errorRegValue & 0b00010011) // BufferOvfl ParityErr ProtocolErr
{
mode = MODE_IDLE;
_transceiveCb(ERR, this, nullptr, 0, _transceiveUserData);
return;
}
uint8_t fifoBites = read(FIFOLevelReg);
if(fifoBites > reponseBufferLen)
_transceiveCb(LEN, this, nullptr, 0, _transceiveUserData);
read(FIFODataReg, reponseBuffer, fifoBites);
mode = MODE_IDLE;
if(errorRegValue & 0x08)
_transceiveCb(COLLISION, this, reponseBuffer, fifoBites, _transceiveUserData);
else
_transceiveCb(0, this, reponseBuffer, fifoBites, _transceiveUserData);
}
uint8_t Mfrc522::transceive(uint8_t *sendData, uint8_t sendLen,
uint8_t *recvData, uint8_t *recvLen,
uint8_t validBits, uint8_t rxAlign,
uint8_t *rxValidBits)
{
write(CommandReg, IDLE);
write(ComIrqReg, 0b01111111); // clear irqs
setupTransceive(sendData, sendLen, validBits, rxAlign);
uint16_t i = 2000;
uint8_t irq = read(ComIrqReg);
while(irq & waitIrq)
while(!(irq & 0x30)) // RxIRq and IdleIRq
{
irq = read(ComIrqReg);
if(irq & 0x01 || --i == 0)
@ -200,13 +263,6 @@ uint8_t Mfrc522::commuicateWithTag(uint8_t command, uint8_t waitIrq,
return 0;
}
uint8_t Mfrc522::transceive(uint8_t *sendData, uint8_t sendLen, uint8_t *recvData, uint8_t *recvLen,
uint8_t validBits, uint8_t rxAlign, uint8_t *rxValidBits)
{
uint8_t waitIRq = 0x30; // RxIRq and IdleIRq
return commuicateWithTag(TRANSCEIVE, waitIRq, sendData, sendLen, recvData,
recvLen, validBits, rxAlign, rxValidBits);
}
uint8_t Mfrc522::wakeupTag(uint8_t* bufferATQA, uint8_t *bufferLen)
{
@ -234,14 +290,13 @@ uint8_t Mfrc522::selectTag(Uid *uid)
uint8_t index;
uint8_t uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level.
int8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level.
uint8_t buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 uint8_t standard frame + 2 uint8_ts CRC_A
uint8_t bufferUsed; // The number of uint8_ts used in the buffer, ie the number of uint8_ts to transfer to the FIFO
uint8_t txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted uint8_t.
uint8_t *responseBuffer;
uint8_t *responseBufferPtr;
uint8_t responseLength;
if(serial)
serial->write_p(PSTR("Select\n"));
serial->write_p(PSTR("Select\n"));
// Description of buffer structure:
// Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3
@ -277,17 +332,17 @@ uint8_t Mfrc522::selectTag(Uid *uid)
switch(cascadeLevel)
{
case 0:
buffer[0] = PICC_CMD_SEL_CL1;
reponseBuffer[0] = PICC_CMD_SEL_CL1;
uidIndex = 0;
break;
case 1:
buffer[0] = PICC_CMD_SEL_CL2;
reponseBuffer[0] = PICC_CMD_SEL_CL2;
uidIndex = 3;
break;
case 2:
buffer[0] = PICC_CMD_SEL_CL3;
reponseBuffer[0] = PICC_CMD_SEL_CL3;
uidIndex = 6;
break;
@ -309,7 +364,7 @@ uint8_t Mfrc522::selectTag(Uid *uid)
if (bytesToCopy > maxBytes)
bytesToCopy = maxBytes;
for (count = 0; count < bytesToCopy; count++)
buffer[index++] = uid->uidByte[uidIndex + count];
reponseBuffer[index++] = uid->uidByte[uidIndex + count];
}
// Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations.
@ -319,11 +374,11 @@ uint8_t Mfrc522::selectTag(Uid *uid)
// Find out how many bits and bytes to send and receive.
if (currentLevelKnownBits >= 32) // All UID bits in this Cascade Level are known. This is a SELECT.
{
buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes
reponseBuffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes
// Calculate BCC - Block Check Character
buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5];
reponseBuffer[6] = reponseBuffer[2] ^ reponseBuffer[3] ^ reponseBuffer[4] ^ reponseBuffer[5];
// Calculate CRC_A
result = calculateCrc(buffer, 7, reinterpret_cast<uint16_t*>(&buffer[7]));
result = calculateCrc(reponseBuffer, 7, reinterpret_cast<uint16_t*>(&reponseBuffer[7]));
if (result != 0)
{
if(serial)
@ -333,7 +388,7 @@ uint8_t Mfrc522::selectTag(Uid *uid)
txLastBits = 0; // 0 => All 8 bits are valid.
bufferUsed = 9;
// Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx)
responseBuffer = &buffer[6];
responseBufferPtr = &reponseBuffer[6];
responseLength = 3;
}
else // This is an ANTICOLLISION.
@ -341,31 +396,20 @@ uint8_t Mfrc522::selectTag(Uid *uid)
txLastBits = currentLevelKnownBits % 8;
count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part.
index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs
buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits
reponseBuffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits
bufferUsed = index + (txLastBits ? 1 : 0);
// Store response in the unused part of buffer
responseBuffer = &buffer[index];
responseLength = sizeof(buffer) - index;
responseBufferPtr = &reponseBuffer[index];
responseLength = sizeof(reponseBuffer) - index;
}
// Set bit adjustments
uint8_t rxAlign = txLastBits;
// RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
write(BitFramingReg, (rxAlign << 4) + txLastBits);
if(serial)
{
serial->write_p(PSTR("entering transceive "));
serial->write((int)responseLength);
serial->putChar(' ');
serial->write((int)txLastBits);
serial->putChar(' ');
serial->write((int)currentLevelKnownBits);
serial->putChar('\n');
}
// Transmit the buffer and receive the response.
result = transceive(buffer, bufferUsed, responseBuffer, &responseLength, txLastBits, rxAlign, &txLastBits);
result = transceive(reponseBuffer, bufferUsed, responseBufferPtr, &responseLength, txLastBits, rxAlign, &txLastBits);
if (result == COLLISION) // More than one PICC in the field => collision.
{
result = read(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0]
@ -381,8 +425,6 @@ uint8_t Mfrc522::selectTag(Uid *uid)
}
if (collisionPos <= currentLevelKnownBits) // No progress - should not happen
{
if(serial)
serial->write_p(PSTR("err No progress\n"));
return ERR;
}
// Choose the PICC with the bit set.
@ -390,7 +432,7 @@ uint8_t Mfrc522::selectTag(Uid *uid)
count = currentLevelKnownBits % 8; // The bit to modify
checkBit = (currentLevelKnownBits - 1) % 8;
index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0.
buffer[index] |= (1 << checkBit);
reponseBuffer[index] |= (1 << checkBit);
}
else if (result != 0)
{
@ -410,11 +452,11 @@ uint8_t Mfrc522::selectTag(Uid *uid)
// We do not check the CBB - it was constructed by us above.
// Copy the found UID bytes from buffer[] to uid->uidByte[]
index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[]
bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4;
index = (reponseBuffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[]
bytesToCopy = (reponseBuffer[2] == PICC_CMD_CT) ? 3 : 4;
for (count = 0; count < bytesToCopy; count++)
{
uid->uidByte[uidIndex + count] = buffer[index++];
uid->uidByte[uidIndex + count] = reponseBuffer[index++];
}
// Check response SAK (Select Acknowledge)
@ -431,19 +473,19 @@ uint8_t Mfrc522::selectTag(Uid *uid)
return ERR;
}
// Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore.
result = calculateCrc(responseBuffer, 1, reinterpret_cast<uint16_t*>(&buffer[2]));
result = calculateCrc(responseBufferPtr, 1, reinterpret_cast<uint16_t*>(&reponseBuffer[2]));
if (result != 0)
return result;
if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2]))
if ((reponseBuffer[2] != responseBufferPtr[1]) || (reponseBuffer[3] != responseBufferPtr[2]))
return CRC;
if (responseBuffer[0] & 0x04) // Cascade bit set - UID not complete yes
if (responseBufferPtr[0] & 0x04) // Cascade bit set - UID not complete yes
{
cascadeLevel++;
}
else
{
uidComplete = true;
uid->sak = responseBuffer[0];
uid->sak = responseBufferPtr[0];
}
} // End of while ( ! uidComplete)
@ -453,9 +495,65 @@ uint8_t Mfrc522::selectTag(Uid *uid)
return 0;
}
uint8_t Mfrc522::getUid(Uid *uid)
{
uint8_t bufferOut[2];
uint8_t reponseBuffer[5];
bufferOut[0] = PICC_CMD_SEL_CL1;
bufferOut[1] = 2 << 4;
uint8_t rxLen = sizeof(reponseBuffer);
uint8_t ret = transceive(bufferOut, 2, reponseBuffer, &rxLen);
if(ret != 0)
return ret;
if(rxLen != 5)
return ERR;
uid->size = 4;
for(uint8_t i = 0; i < uid->size; ++i)
{
uid->uidByte[i] = reponseBuffer[i+1];
}
return 0;
}
void Mfrc522::irq()
{
if(mode == MODE_TRANSCEIVE)
{
uint8_t irqs = read(ComIrqReg);
if(irqs)
{
if(serial)
{
serial->write("IRQS: ");
serial->write((int)irqs);
serial->putChar('\n');
}
write(ComIrqReg, 0b01111111); // clear irqs
transceiveAsyncFinish(irqs);
}
}
else if(mode == MODE_TIMEOUT)
{
write(ComIrqReg, 0b01111111); // clear irqs
write(TReloadRegH, POLL_TIMER >> 8);
write(TReloadRegL, POLL_TIMER & 0x0F);
mode = MODE_IDLE;
if(_transceiveCb)
_transceiveCb(TIMEOUT, this, nullptr, 0, _transceiveUserData);
}
else if(serial)
{
write(ComIrqReg, 0b01111111);
serial->write("IRQ wrong mode\n");
}
}
void Mfrc522::setRf(bool on)
@ -469,9 +567,8 @@ void Mfrc522::setRf(bool on)
bool Mfrc522::cardPresent()
{
uint8_t bufferATQA[2];
uint8_t bufferLen = sizeof(bufferATQA);
uint8_t ret = wakeupTag(bufferATQA, &bufferLen);
uint8_t bufferLen = sizeof(reponseBuffer);
uint8_t ret = wakeupTag(reponseBuffer, &bufferLen);
return ret == 0 || ret == COLLISION;
}
@ -480,30 +577,79 @@ bool Mfrc522::probe(SpiMaster* spi, ShiftReg<NFC_PORTS>* csReg, uint8_t csPin)
csReg->setBit(csPin, false);
spi->readWrite((VersionReg << 1) | (1 << 7));
uint8_t version = spi->readWrite();
if(serial)
{
serial->write_p(PSTR("Got version register: "));
serial->write((int)version);
serial->putChar('\n');
}
csReg->setBit(csPin, true);
return version == 0x91 || version == 0x92;
}
bool Mfrc522::testFifo()
bool Mfrc522::testFifo(Serial* serial)
{
uint8_t buffer[8] = {42, 43, 44, 45, 46, 47, 48, 49};
uint8_t buffer2[8] = {};
write(FIFOLevelReg, 1 << 7); // Flush fifo Buffer;
write(FIFODataReg, buffer, sizeof(buffer)); // Fill fifo
if(serial)
serial->write_p(PSTR("Fifo buffer contains: "));
serial->write_p(PSTR("Fifo buffer contains: "));
uint8_t len = read(FIFOLevelReg);
read(FIFODataReg, buffer2, len);
if(len > 8)
{
serial->write_p(PSTR("FIFOLevelReg to long\n"));
return false;
}
read(FIFODataReg, reponseBuffer, len);
bool ret = true;
for(uint8_t i = 0; i < len; ++i)
{
if(buffer[i] != buffer2[i])
if(buffer[i] != reponseBuffer[i])
ret = false;
serial->write((int)buffer2[i]);
serial->write((int)reponseBuffer[i]);
serial->putChar(' ');
}
serial->putChar('\n');
return ret;
}
bool Mfrc522::detectAsync(void (*tagEnterdCb)(Mfrc522*, void*), void* userData)
{
if(irqDetect)
return false;
_tagEnterdCb = tagEnterdCb;
_userData = userData;
irqDetect = true;
updateBit(CollReg, 7, false);
uint8_t data = PICC_CMD_WUPA;
if(transceiveAsync(&detectAsyncCb, nullptr, &data, 1, 7) != 0)
{
irqDetect = false;
return false;
}
return true;
}
void Mfrc522::stopAsync()
{
write(CommandReg, IDLE);
write(FIFOLevelReg, 1 << 7);
mode = MODE_IDLE;
irqDetect = false;
write(ComIrqReg, 0b01111111);
}
void Mfrc522::detectAsyncCb(uint8_t ret, Mfrc522* reader, uint8_t* response, uint8_t responseLen, void* userData)
{
if((ret == 0 || ret == COLLISION) && reader->_tagEnterdCb)
{
reader->stopAsync();
reader->_tagEnterdCb(reader, reader->_userData);
}
else
{
reader->irqDetect = false;
reader->detectAsync(reader->_tagEnterdCb, reader->_userData);
}
}

View File

@ -3,10 +3,19 @@
#include "softspim.h"
#include "defines.h"
#include "serial.h"
#include "uid.h"
class Mfrc522
{
public:
static constexpr uint32_t POLL_OUT_US = 15000;
static constexpr uint8_t PRESCALLER = 169;
static constexpr uint16_t POLL_TIMER = (POLL_OUT_US*1.0E-6)/((2*PRESCALLER+1)/13.56E6);
static constexpr uint32_t TIMEOUT_US = 1000000;
static constexpr uint16_t TIMEOUT_TIMER = (TIMEOUT_US*1.0E-6)/((2*169.0+1)/13.56E6);
// Error codes.
static constexpr uint8_t OK = 0; // Everything A-OK.
static constexpr uint8_t NOTAGERR = 1; // No tag error
@ -14,7 +23,8 @@ public:
static constexpr uint8_t LEN = 3; // Buffer length error
static constexpr uint8_t COLLISION = 4; // Chip collision
static constexpr uint8_t CRC = 5; // CRC incorrect collision
static constexpr uint8_t ERR = 6; // General error
static constexpr uint8_t BUSY = 6; // System is busy
static constexpr uint8_t ERR = 7; // General error
// Command words
static constexpr uint8_t IDLE = 0x00; // NO action; Cancel the current command
@ -132,13 +142,10 @@ public:
// The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight.
static constexpr uint8_t PICC_CMD_UL_WRITE = 0xA2; // Writes one 4 byte page to the PICC
typedef struct
{
uint8_t size; // Number of bytes in the UID. 4, 7 or 10.
uint8_t uidByte[10];
uint8_t sak; // The SAK (Select acknowledge) byte returned from the PICC after successful selection.
} Uid;
// Modes
static constexpr uint8_t MODE_IDLE = 0;
static constexpr uint8_t MODE_TRANSCEIVE = 1;
static constexpr uint8_t MODE_TIMEOUT = 2;
private:
ShiftReg<NFC_PORTS>* _csReg;
@ -146,44 +153,78 @@ private:
uint8_t _csPin;
void (*_tagEnterdCb)(Mfrc522*, void*);
void* _userData;
void (*_transceiveCb)(uint8_t ret, Mfrc522* reader, uint8_t* response, uint8_t responseLen, void* userData);
void* _transceiveUserData;
static constexpr uint8_t reponseBufferLen = 16;
static uint8_t reponseBuffer[reponseBufferLen];
volatile uint8_t mode = MODE_IDLE;
volatile bool irqDetect = false;
void setupTransceive(uint8_t *sendData, uint8_t sendLen, uint8_t validBits = 0, uint8_t rxAlign = 0);
uint8_t transceiveAsync(void (*transceiveCb)(uint8_t, Mfrc522*, uint8_t*, uint8_t, void*), void* userData, uint8_t *sendData,
uint8_t sendLen, uint8_t validBits = 0, uint8_t rxAlign = 0);
void transceiveAsyncFinish(uint8_t irq);
uint8_t transceive(uint8_t *sendData, uint8_t sendLen, uint8_t *recvData, uint8_t *recvLen,
uint8_t validBits= 0, uint8_t rxAlign = 0, uint8_t *rxValidBits = nullptr);
static void detectAsyncCb(uint8_t ret, Mfrc522* reader, uint8_t* response, uint8_t responseLen, void* userData);
public:
uint8_t read(uint8_t addr);
void read(uint8_t addr, uint8_t* data, uint8_t datalen, uint8_t rxAlign = 0);
void write(uint8_t addr, uint8_t data);
void write(uint8_t addr, uint8_t* data, uint8_t datalen);
void updateBit(uint8_t addr, uint8_t bit, bool value);
void (*_tagEnterdCb)(Mfrc522*, void*);
void* _userData;
public:
static Serial* serial;
inline static Serial* serial = nullptr;
Mfrc522(SpiMaster* spi, ShiftReg<NFC_PORTS>* csReg, uint8_t csPin,
void (*tagEnterdCb)(Mfrc522*, void*) = nullptr, void* userData = nullptr);
Mfrc522(SpiMaster* spi, ShiftReg<NFC_PORTS>* csReg, uint8_t csPin);
uint8_t calculateCrc(uint8_t *data, uint8_t length, uint16_t *result);
uint8_t commuicateWithTag(uint8_t command, uint8_t waitIrq,
uint8_t *sendData, uint8_t sendLen,
uint8_t *recvData, uint8_t *recvLen,
uint8_t validBits = 0, uint8_t rxAlign = 0,
uint8_t *rxValidBits = nullptr);
uint8_t transceive(uint8_t *sendData, uint8_t sendLen, uint8_t *recvData, uint8_t *recvLen,
uint8_t validBits = 0, uint8_t rxAlign = 0, uint8_t *rxValidBits = nullptr);
uint8_t wakeupTag(uint8_t* bufferATQA, uint8_t *bufferLen);
uint8_t selectTag(Uid *uid);
uint8_t getUid(Uid *uid);
uint8_t getCs(){return _csPin;}
void reset();
void irq();
void setRf(bool on);
bool detectAsync(void (*tagEnterdCb)(Mfrc522*, void*) = nullptr, void* userData = nullptr);
void stopAsync();
bool cardPresent();
bool testFifo();
bool testFifo(Serial* serial);
bool startTimeout(void (transceiveCb)(uint8_t, Mfrc522*, uint8_t*, uint8_t, void*), void* userData)
{
_transceiveCb = transceiveCb;
_transceiveUserData = userData;
if(mode != MODE_IDLE)
return false;
mode = MODE_TIMEOUT;
write(TReloadRegH, TIMEOUT_TIMER >> 8);
write(TReloadRegL, TIMEOUT_TIMER & 0x0F);
write(ComIrqReg, 0b01111111); // clear irqs
write(ComIEnReg, (1 << 0));
updateBit(ControlReg, 6, true);
return true;
}
static bool probe(SpiMaster* spi, ShiftReg<NFC_PORTS>* csReg, uint8_t csPin);
};

52
mfrcproxy.cpp Normal file
View File

@ -0,0 +1,52 @@
#include "mfrcproxy.h"
MfrcProxy::MfrcProxy(SpiMaster* spi, ShiftReg<NFC_PORTS>* csReg, uint8_t csPin, void (detectCb)(MfrcProxy* proxy, Uid uid, void* data), void* userData):
_csReg(csReg), _spi(spi), _detectCb(detectCb), _userData(userData), _csPin(csPin)
{
}
uint8_t MfrcProxy::read(uint8_t addr)
{
_csReg->setBit(_csPin, false);
_delay_us(5);
_spi->readWrite(addr);
_delay_us(5);
uint8_t res = _spi->readWrite();
_csReg->setBit(_csPin, true);
return res;
}
void MfrcProxy::irq()
{
if(read(REG_IRQ_BITS))
{
uint8_t len = read(REG_UID_LEN);
if(len > 0 && len < 11)
{
Uid uid;
for(uint8_t i = 0; i < len; ++i)
{
uid.uidByte[i] = read(REG_UID_START_REG+i);
}
uid.size = len;
_detectCb(this, uid, _userData);
}
}
}
bool MfrcProxy::probe(SpiMaster* spi, ShiftReg<NFC_PORTS>* csReg, uint8_t csPin)
{
csReg->setBit(csPin, false);
_delay_us(5);
spi->readWrite(REG_CHIP_ID);
_delay_us(5);
uint8_t version = spi->readWrite();
csReg->setBit(csPin, true);
return version == 0x87;
}
uint8_t MfrcProxy::getId()
{
return read(REG_ID);
}

36
mfrcproxy.h Normal file
View File

@ -0,0 +1,36 @@
#pragma once
#include <stdint.h>
#include "shiftreg.h"
#include "softspim.h"
#include "defines.h"
#include "serial.h"
#include "uid.h"
class MfrcProxy
{
public:
static constexpr uint8_t REG_CHIP_ID = 0xEE;
static constexpr uint8_t REG_ID = 0x01;
static constexpr uint8_t REG_IRQ_BITS = 0x02;
static constexpr uint8_t REG_UID_LEN = 0x04;
static constexpr uint8_t REG_UID_START_REG = 0x10;
private:
ShiftReg<NFC_PORTS>* _csReg;
SpiMaster* _spi;
void (*_detectCb)(MfrcProxy* proxy, Uid uid, void* data);
void* _userData;
uint8_t _csPin;
public:
MfrcProxy(SpiMaster* spi, ShiftReg<NFC_PORTS>* csReg, uint8_t csPin, void (detectCb)(MfrcProxy* proxy, Uid uid, void* data), void* userData = nullptr);
uint8_t read(uint8_t addr);
void irq();
static bool probe(SpiMaster* spi, ShiftReg<NFC_PORTS>* csReg, uint8_t csPin);
uint8_t getId();
uint8_t getCs(){return _csPin;}
};

View File

@ -4,121 +4,461 @@
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <avr/wdt.h>
#include <stdio.h>
#include "writepin.h"
#include "watchdog.h"
NfcBoard nfcBoard(Serial::getInstance());
extern char buffer[SNPRINTF_BUFFER_SIZE];
NfcBoard::NfcBoard():
ISR(WDT_vect)
{
for(uint8_t i = 0; i < nfcBoard.watchDogBits.count(); ++i)
{
if(nfcBoard.watchDogBits[i] == 0)
nfcBoard.watchDogBits[i] = 2;
else
nfcBoard.watchDogBits[i] = 0;
}
}
NfcBoard::NfcBoard(Serial* serialIn):
serial(serialIn),
csReg(&PORTC, PC1, PC2, PC0),
irqReg(&PORTC, &PINB, PC5, PB1, PC4)
{
DDRC = (1 << PC0) | (1 << PC1) | (1 << PC2) | (1 << PC4) | (1 << PC5);
DDRB = (1 << PB4) | (1 << PB3);
DDRC |= (1 << PC0) | (1 << PC1) | (1 << PC2) | (1 << PC4) | (1 << PC5);
DDRB |= (1 << PB4) | (1 << PB3);
csReg.clear(true);
irqReg.read();
probe();
setEnabled(true);
}
void NfcBoard::poll(Serial* serial)
{
for(uint8_t i = 0; i < watchDogBits.count(); ++i)
{
if(watchDogBits[i] == 2 && readers[i].type == TYPE_MFRC522)
{
if(serial)
{
serial->write_p(PSTR("Warning reader watchdog timeout for reader "));
serial->write((int)i);
serial->putChar('\n');
}
readers[i].device.mfrc522.reset();
if(enabled_)
readers[i].device.mfrc522.detectAsync(detectCb, this);
watchDogBits[i] = 1;
}
}
if(readPin(&PINC, PC3))
{
uint8_t* data = irqReg.read();
for(uint8_t i = 0; i < NFC_PORTS; ++i)
{
if(*data & (1 << i))
{
for(uint8_t j = 0; j < readers.count(); ++j)
{
if(irqPins[j] == i)
{
if(readers[j].type == TYPE_MFRC522)
{
readers[j].device.mfrc522.irq();
watchDogBits[j] = 1;
}
else
{
readers[j].device.proxy.irq();
}
}
}
}
}
}
}
void NfcBoard::setEnabled(bool enabled)
{
if(enabled != enabled_)
{
enabled_ = enabled;
for(uint8_t i = 0; i < readers.count(); ++i)
{
if(readers[i].type == TYPE_MFRC522)
{
if(enabled)
readers[i].device.mfrc522.detectAsync(detectCb, this);
else
readers[i].device.mfrc522.stopAsync();
watchDogBits[i] = 0;
}
}
if(enabled)
wdt_set(WDTO_4S);
else
wdt_disable();
}
}
uint8_t NfcBoard::csToIrq(uint8_t cs)
{
switch(cs)
{
case 0:
return 4;
case 1:
return 2;
case 2:
return 1;
case 3:
return 0;
case 4:
return 7;
case 5:
return 6;
case 6:
return 5;
case 7:
return 3;
default:
return 8;
}
}
void NfcBoard::probe()
{
readers.clear();
irqPins.clear();
watchDogBits.clear();
for(uint8_t i = 0; i < NFC_PORTS; ++i)
{
if(Mfrc522::probe(&spim, &csReg, i))
{
irqPins.push_back(i);
NfcPort port(Mfrc522(&spim, &csReg, i));
readers.push_back(port);
irqPins.push_back(csToIrq(i));
watchDogBits.push_back(0);
}
else if(MfrcProxy::probe(&spim, &csReg, i))
{
NfcPort port(MfrcProxy(&spim, &csReg, i, proxyDetectCb, this));
readers.push_back(port);
irqPins.push_back(csToIrq(i));
watchDogBits.push_back(0);
}
}
for(uint8_t i = 0; i < irqPins.count(); ++i)
{
readers.push_back(Mfrc522(&spim, &csReg, irqPins[i]));
}
}
void NfcBoard::printNfcDevices(Serial* serial)
void NfcBoard::printNfcDevices()
{
serial->write_p(PSTR("NFC DEVICES:\n"));
for(uint8_t i = 0; i < readers.count(); ++i)
{
snprintf(buffer, SNPRINTF_BUFFER_SIZE, "NFC NUMBER: %u IRQ: %x\n", i, irqPins[i]);
uint8_t id = readers[i].type == TYPE_MFRC522 ? i+0x80 : readers[i].device.proxy.getId();
uint8_t cs = readers[i].type == TYPE_MFRC522 ?
readers[i].device.mfrc522.getCs() : readers[i].device.proxy.getCs();
snprintf_P(buffer, SNPRINTF_BUFFER_SIZE, PSTR("NFC NUMBER: %u CS: %x IRQ: %x TYPE: %d\n"),
id, cs, irqPins[i], readers[i].type);
serial->write(buffer, SNPRINTF_BUFFER_SIZE);
}
}
int NfcBoard::dispatch(char* inBuffer, Serial* serial)
{
else if(strcmp(inBuffer, "detect") == 0 )
int NfcBoard::dispatch(char* inBuffer)
{
Mfrc522* mainReader = nullptr;
for(uint8_t i = 0; i < readers.count(); ++i)
{
serial->write_p(PSTR("Runing tag detection test\n"));
bool oldPresent = false;
if(readers[i].type == TYPE_MFRC522)
{
mainReader = &readers[i].device.mfrc522;
}
}
if(strcmp(inBuffer, "debug") == 0)
{
Mfrc522::serial = serial;
return 0;
}
else if(strcmp(inBuffer, "quiet") == 0 )
{
Mfrc522::serial = nullptr;
return 0;
}
else if(strcmp(inBuffer, "irqs") == 0 )
{
serial->write_p(PSTR("Irq pin detection test\n"));
while(!serial->dataIsWaiting())
{
bool present = readers[0].cardPresent();
if(present && !oldPresent)
uint8_t* data = irqReg.read();
for(uint8_t i = 0; i < NFC_PORTS; ++i)
{
oldPresent = present;
Mfrc522::Uid uid;
//Mfrc522::serial = serial;
uint8_t res = readers[0].selectTag(&uid);
Mfrc522::serial = nullptr;
if(res != 0)
if(*data & (1 << i))
{
serial->write_p(PSTR("Select Failed with "));
serial->write((int)res);
serial->write("IRQ: ");
serial->write((int)i);
serial->putChar('\n');
continue;
}
serial->write_p(PSTR("Uid: "));
for(uint8_t i = 0; i < uid.size; ++i)
{
serial->write((int)uid.uidByte[i]);
serial->putChar(':');
}
serial->putChar('\n');
break;
}
else if(!present && oldPresent)
{
serial->write_p(PSTR("Tag lost\n"));
oldPresent = present;
}
_delay_ms(100);
}
serial->write_p(PSTR("Finished\n"));
return 0;
}
else if(strcmp(inBuffer, "tste") == 0 )
else if(strcmp(inBuffer, "select") == 0 )
{
serial->write_p(PSTR("Runing fifo test\n"));
Mfrc522::serial = serial;
readers[0].testFifo();
Mfrc522::serial = nullptr;
bool enabled = enabled_;
setEnabled(false);
if(!mainReader)
{
serial->write_p(PSTR("No nfc reader present\n"));
return -1;
}
serial->write_p(PSTR("Runing tag detection test\n"));
while(!serial->dataIsWaiting())
{
bool present = mainReader->cardPresent();
if(present)
{
Uid uid;
uint8_t res = mainReader->selectTag(&uid);
if(res != 0)
continue;
serial->write_p(PSTR("Uid: "));
for(uint8_t i = 0; i < uid.size; ++i)
{
serial->write((int)uid.uidByte[i]);
if(i < uid.size-1)
serial->putChar(':');
}
serial->putChar('\n');
}
_delay_ms(100);
}
setEnabled(enabled);
serial->write_p(PSTR("Finished\n"));
return 0;
}
else if(strcmp(inBuffer, "status") == 0 )
else if(strcmp(inBuffer, "detect") == 0 )
{
printNfcDevices(serial);
bool enabled = enabled_;
setEnabled(false);
if(!mainReader)
{
serial->write_p(PSTR("No nfc reader present\n"));
return -1;
}
serial->write_p(PSTR("Runing fast tag detection test\n"));
while(!serial->dataIsWaiting())
{
bool present = mainReader->cardPresent();
if(present)
{
Uid uid;
uint8_t res = mainReader->getUid(&uid);
if(res != 0)
continue;
serial->write_p(PSTR("Uid: "));
for(uint8_t i = 0; i < uid.size; ++i)
{
serial->write((int)uid.uidByte[i]);
if(i < uid.size-1)
serial->putChar(':');
}
serial->putChar('\n');
}
}
setEnabled(enabled);
serial->write_p(PSTR("Finished\n"));
return 0;
}
else if(strcmp(inBuffer, "wake") == 0 )
else if(strcmp(inBuffer, "enable") == 0 )
{
uint8_t bufferATQA[2];
uint8_t len = sizeof(bufferATQA);
uint8_t res = readers[0].wakeupTag(bufferATQA, &len);
snprintf(buffer, SNPRINTF_BUFFER_SIZE, "wakeupTag returned: %u Buffer: 0x%x 0x%x len %u\n",
res, bufferATQA[0], bufferATQA[1], len);
serial->write(buffer, SNPRINTF_BUFFER_SIZE);
if(enabled_)
{
serial->write_p(PSTR("Nfc tag listening allready enabled\n"));
return -1;
}
setEnabled(true);
serial->write_p(PSTR("Nfc tag listening enabled\n"));
return 0;
}
else if(strcmp(inBuffer, "disable") == 0 )
{
if(!enabled_)
{
serial->write_p(PSTR("Nfc tag listening already disabled\n"));
return -1;
}
setEnabled(false);
serial->write_p(PSTR("Nfc tag listening disabled\n"));
return 0;
}
else if(strcmp(inBuffer, "list") == 0 )
{
printNfcDevices();
return 0;
}
else if(strcmp(inBuffer, "probe") == 0 )
{
bool enabled = enabled_;
setEnabled(false);
probe();
printNfcDevices(serial);
printNfcDevices();
setEnabled(enabled);
return 0;
}
else if(strcmp(inBuffer, "read") == 0 )
{
int16_t addr = -1;
int16_t csPin = -1;
char* token = strtok(NULL, " ");
if(token)
csPin = strtol(token, nullptr, 16);
if(csPin < 0 || csPin > 7)
{
serial->write_p(PSTR("A valid cs pin must be specified\n"));
return -1;
}
token = strtok(NULL, " ");
if(token)
addr = strtol(token, nullptr, 16);
if(addr < 0 || addr > 0xFF)
{
serial->write_p(PSTR("A address must be specified\n"));
return -1;
}
uint8_t result = 0;
for(uint8_t i = 0; i < readers.count(); ++i)
{
if(readers[i].type == TYPE_MFRC522)
{
if(readers[i].device.mfrc522.getCs() == csPin)
{
result = readers[i].device.mfrc522.read(addr);
serial->write_p(PSTR("read sucessfull\n"));
}
}
else
{
if(readers[i].device.proxy.getCs() == csPin)
{
result = readers[i].device.proxy.read(addr);
serial->write_p(PSTR("read sucessfull\n"));
}
}
}
snprintf_P(buffer, SNPRINTF_BUFFER_SIZE, PSTR("Got: 0x%02x in return\n"), result);
serial->write(buffer, SNPRINTF_BUFFER_SIZE);
return 0;
}
else if(strcmp(inBuffer, "write") == 0 )
{
int16_t addr = -1;
int16_t csPin = -1;
int16_t data = -1;
char* token = strtok(NULL, " ");
if(token)
csPin = strtol(token, nullptr, 16);
if(csPin < 0 || csPin > 7)
{
serial->write_p(PSTR("A valid cs pin must be specified\n"));
return -1;
}
token = strtok(NULL, " ");
if(token)
addr = strtol(token, nullptr, 16);
if(addr < 0 || addr > 0xFF)
{
serial->write_p(PSTR("A address must be specified\n"));
return -1;
}
token = strtok(NULL, " ");
if(token)
data = strtol(token, nullptr, 16);
if(data < 0 || data > 0xFF)
{
serial->write_p(PSTR("Data must be specified\n"));
return -1;
}
for(uint8_t i = 0; i < readers.count(); ++i)
{
if(readers[i].type == TYPE_MFRC522)
{
if(readers[i].device.mfrc522.getCs() == csPin)
{
readers[i].device.mfrc522.write(addr, data);
serial->write_p(PSTR("Write sucessfull\n"));
}
}
else
{
if(readers[i].device.proxy.getCs() == csPin)
{
serial->write_p(PSTR("Mfrc522 proxies are not writable\n"));
return -1;
}
}
}
return 0;
}
return -3;
}
void NfcBoard::printTag(const uint8_t id, const Uid& uid, Serial* serial)
{
serial->write("NFC ");
serial->write((int)id);
serial->write(" TAG ");
for(uint8_t i = 0; i < uid.size; ++i)
{
serial->write((int)uid.uidByte[i]);
if(i < uid.size-1)
serial->putChar(':');
}
serial->putChar('\n');
}
void NfcBoard::proxyDetectCb(MfrcProxy* proxy, const Uid uid, void* data)
{
NfcBoard* instance = reinterpret_cast<NfcBoard*>(data);
printTag(proxy->getId(), uid, instance->serial);
}
void NfcBoard::detectCb(Mfrc522* reader, void* data)
{
NfcBoard* instance = reinterpret_cast<NfcBoard*>(data);
Uid uid;
if(reader->getUid(&uid) == 0)
{
uint8_t i;
for(i = 0; i < instance->readers.count(); ++i)
{
if(&instance->readers[i].device.mfrc522 == reader)
break;
}
printTag(i+0x80, uid, instance->serial);
reader->startTimeout(&timeoutCb, data);
}
else
{
reader->detectAsync(detectCb, data);
}
}
void NfcBoard::timeoutCb(uint8_t ret, Mfrc522* reader, uint8_t* response, uint8_t responseLen, void* userData)
{
reader->detectAsync(&detectCb, userData);
}

View File

@ -1,4 +1,5 @@
#pragma once
#include "placementnew.h"
#include "serial.h"
#include "shiftreg.h"
#include "inputshiftreg.h"
@ -6,21 +7,80 @@
#include "softspim.h"
#include "staticvector.h"
#include "defines.h"
#include "mfrcproxy.h"
class NfcBoard
{
public:
ShiftReg<NFC_PORTS> csReg;
InputShiftReg<NFC_PORTS> irqReg;
SpiMaster spim;
SVector<Mfrc522, NFC_PORTS> readers;
SVector<uint8_t, NFC_PORTS> irqPins;
private:
NfcBoard();
static constexpr int TYPE_MFRC522 = 0;
static constexpr int TYPE_PROXY = 1;
union PortDevice
{
Mfrc522 mfrc522;
MfrcProxy proxy;
PortDevice(const Mfrc522& mfrc522In)
{
new (&mfrc522) Mfrc522(mfrc522In);
}
PortDevice(const MfrcProxy& proxyIn)
{
new (&proxy) MfrcProxy(proxyIn);
}
};
struct NfcPort
{
PortDevice device;
uint8_t type;
NfcPort(const Mfrc522& mfrc522): device(mfrc522)
{
type = TYPE_MFRC522;
}
NfcPort(const MfrcProxy& proxy): device(proxy)
{
type = TYPE_PROXY;
}
~NfcPort()
{
if(type == TYPE_MFRC522)
device.mfrc522.~Mfrc522();
else
device.proxy.~MfrcProxy();
}
};
Serial* serial;
SpiMaster spim;
ShiftReg<NFC_PORTS> csReg;
bool enabled_ = false;
static void printTag(const uint8_t id, const Uid& uid, Serial* serial);
public:
InputShiftReg<NFC_PORTS> irqReg;
SVector<uint8_t, NFC_PORTS> irqPins;
SVector<NfcPort, NFC_PORTS> readers;
SVector<volatile uint8_t, NFC_PORTS> watchDogBits;
static void detectCb(Mfrc522* reader, void* data);
static void timeoutCb(uint8_t ret, Mfrc522* reader, uint8_t* response, uint8_t responseLen, void* userData);
static void proxyDetectCb(MfrcProxy* proxy, const Uid uid, void* data);
NfcBoard(Serial* serialIn);
void probe();
void printNfcDevices(Serial* serial);
void setEnabled(bool enabled);
int dispatch(char* inBuffer, Serial* serial);
void poll(Serial* serial = nullptr);
void printNfcDevices();
int dispatch(char* inBuffer);
uint8_t csToIrq(uint8_t cs);
};
extern NfcBoard nfcBoard;

11
placementnew.cpp Normal file
View File

@ -0,0 +1,11 @@
#include "placementnew.h"
void* operator new(uint16_t, void* const buf)
{
return buf;
}
void* operator new[](uint16_t, void* const buf)
{
return buf;
}

5
placementnew.h Normal file
View File

@ -0,0 +1,5 @@
#pragma once
#include "stdint.h"
void* operator new(uint16_t, void* const buf);
void* operator new[](uint16_t, void* const buf);

View File

@ -2,7 +2,8 @@
#define SERIAL_H
#define BAUD 38400
#define SERIAL_BUFFER_SIZE 384
#define SERIAL_RX_BUFFER_SIZE 384
#define SERIAL_TX_BUFFER_SIZE 128
#include <util/setbaud.h>
#include <avr/io.h>
@ -11,15 +12,25 @@
#include <stdlib.h>
#include <avr/pgmspace.h>
#include "ringbuffer.h"
const bool serialFlowControl = false;
class Serial
{
private:
char _terminator = '\n';
Serial();
public:
Serial();
volatile RingBuffer<SERIAL_RX_BUFFER_SIZE, volatile uint8_t> rxBuffer;
volatile RingBuffer<SERIAL_TX_BUFFER_SIZE, volatile uint8_t> txBuffer;
bool stopped = false;
volatile bool transmitting = false;
static Serial* getInstance();
void putChar(const char c);
void write(const char* in, const unsigned int length);
void write(const char in[]);

View File

@ -53,8 +53,8 @@ public:
for(unsigned char i = 0; i < BITS; ++i)
{
*_port |= (1 << _pinSerClk);
in[i/8] & (1<<(i%8)) ? (*_port &= ~(1 << _pinSer)) : (*_port |= (1 << _pinSer));
*_port |= (1 << _pinSerClk);
*_port &= ~(1 << _pinSerClk);
}
*_port &= ~(1<<_pinRClk);

View File

@ -40,9 +40,9 @@ uint16_t Signal::getPacket()
return data;
}
void Signal::sendData()
void Signal::sendData(bool single)
{
sendRaw(getPacket());
sendRaw(getPacket(), single);
}
uint8_t Signal::getType()

View File

@ -27,6 +27,6 @@ public:
uint8_t getState();
uint8_t getSubaddress();
uint16_t getPacket();
void sendData();
void sendData(bool single = false);
uint8_t getType();
};

View File

@ -17,19 +17,19 @@ uint8_t SpiMaster::readWrite(uint8_t in)
writePin(_port, _pinOut, in & (1 << i));
else
writePin(_port, _pinOut, in & (1 << (7-i)));
if constexpr (CLOCK_PHASE == 0)
if constexpr (CLOCK_PHASE == 0 || CLOCK_PHASE == 2)
_delay_us(DELAY_TIME_US);
writePin(_port, _pinClock, !CLOCK_POLARITY);
if constexpr (CLOCK_PHASE == 1)
if constexpr (CLOCK_PHASE == 1 || CLOCK_PHASE == 2)
_delay_us(DELAY_TIME_US);
if constexpr (BIT_ORDER == 0)
recByte |= readPin(_pinReg, _pinIn) << i;
else
recByte |= readPin(_pinReg, _pinIn) << (7-i);
if constexpr (CLOCK_PHASE == 0)
if constexpr (CLOCK_PHASE == 0 || CLOCK_PHASE == 2)
_delay_us(DELAY_TIME_US);
writePin(_port, _pinClock, CLOCK_POLARITY);
if constexpr (CLOCK_PHASE == 1)
if constexpr (CLOCK_PHASE == 1 || CLOCK_PHASE == 2)
_delay_us(DELAY_TIME_US);
}
return recByte;

View File

@ -6,8 +6,8 @@ class SpiMaster
{
private:
static constexpr uint8_t CLOCK_POLARITY = 1;
static constexpr uint8_t CLOCK_PHASE = 1;
static constexpr uint8_t CLOCK_POLARITY = 0;
static constexpr uint8_t CLOCK_PHASE = 2;
static constexpr uint8_t BIT_ORDER = 1;
volatile uint8_t * const _port = &PORTB;
@ -16,7 +16,7 @@ private:
static constexpr uint8_t _pinOut = PB4;
static constexpr uint8_t _pinClock = PB3;
static constexpr uint8_t DELAY_TIME_US = 10;
static constexpr uint8_t DELAY_TIME_US = 0;
public:

View File

@ -132,9 +132,9 @@ uint16_t Train::assembleSpeedPacket()
return packet;
}
void Train::sendData()
void Train::sendData(bool single)
{
sendRaw(assembleSpeedPacket());
sendRaw(assembleSpeedPacket(), single);
if(_functionmask)
{
uint8_t functionToResend = (_function & 0xF0) >> 4;
@ -144,7 +144,7 @@ void Train::sendData()
if(_functionmask & (1 << functionToResend))
{
_delay_ms(2);
sendRaw(packetAddSpeed() | packetAddFunction(functionToResend) | packetAddFunction(0));
sendRaw(packetAddSpeed() | packetAddFunction(functionToResend) | packetAddFunction(0), false);
}
_function &= ~0xF0;
_function |= functionToResend << 4;
@ -174,7 +174,7 @@ uint8_t Train::getFunctionMask()
return _functionmask;
}
void Train::sendFunction(const uint8_t function, bool enable)
void Train::setFunction(const uint8_t function, bool enable)
{
if(function > 3)
return;

View File

@ -20,7 +20,7 @@ public:
Train(const uint8_t address, uint8_t functionmask = 0, uint8_t quirks = 0);
void sendData();
void sendData(bool single = false);
void reverse();
void stop();
@ -34,7 +34,7 @@ public:
void setFunctionMask(uint8_t functionmask) {_functionmask = functionmask;}
uint8_t getFunctions();
uint8_t getFunctionMask();
void sendFunction(const uint8_t function, bool enable = true);
void setFunction(const uint8_t function, bool enable = true);
uint8_t getQuirks();
void setQuirks(uint8_t quirks);

View File

@ -103,7 +103,7 @@ int trainDispatch(char* inBuffer, Serial* serial)
{
uint8_t functionId = atoi(token);
bool on = (strcmp(boolToken, "on") == 0);
trains[id].sendFunction(functionId, on );
trains[id].setFunction(functionId, on );
serial->write_p(PSTR("Set Train function "));
serial->write(functionId);
serial->write(on ? " on\n" : " off\n");

View File

@ -33,7 +33,7 @@ uint16_t Turnout::getPacket()
return data;
}
void Turnout::sendData()
void Turnout::sendData(bool single)
{
sendRaw(getPacket());
sendRaw(getPacket(), single);
}

View File

@ -18,5 +18,5 @@ public:
uint8_t getDirection();
uint8_t getSubaddress();
uint16_t getPacket();
void sendData();
void sendData(bool single = false);
};

24
uid.h Normal file
View File

@ -0,0 +1,24 @@
#pragma once
class Uid
{
public:
uint8_t size; // Number of bytes in the UID. 4, 7 or 10.
uint8_t uidByte[10];
uint8_t sak; // The SAK (Select acknowledge) byte returned from the PICC after successful selection.
bool operator==(Uid& in)
{
if(size != in.size)
return false;
for(uint8_t i = 0; i < size; ++i)
{
if(uidByte[i] != in.uidByte[i])
return false;
}
return true;
}
bool operator!=(Uid& in)
{
return !operator==(in);
}
};

18
watchdog.h Normal file
View File

@ -0,0 +1,18 @@
#pragma once
#include <avr/wdt.h>
#define wdt_set(value) \
__asm__ __volatile__ ( \
"in __tmp_reg__,__SREG__" "\n\t" \
"cli" "\n\t" \
"wdr" "\n\t" \
"sts %0,%1" "\n\t" \
"out __SREG__,__tmp_reg__" "\n\t" \
"sts %0,%2" \
: \
: "M" (_SFR_MEM_ADDR(_WD_CONTROL_REG)), \
"r" (_BV(_WD_CHANGE_BIT) | _BV(WDE)), \
"r" ((uint8_t) ((value & 0x08 ? _WD_PS3_MASK : 0x00) | \
_BV(WDIE) | (value & 0x07)) ) \
: "r0" \
)