This commit is contained in:
2023-04-03 01:06:58 +02:00
parent 7b936642ad
commit 99ba609f6f
6 changed files with 392 additions and 330 deletions

View File

@ -159,6 +159,12 @@ void DualCl56::setString(const char string[], const uint8_t dp)
break; break;
} }
if( (1 << i) & dp ) _segments[i] |= 1; if( (1 << i) & dp ) _segments[i] |= 1;
else _segments[i] &= ~1;
} }
if(string[i] == '\0') for(; i < 8; i++) _segments[i]&=SEG_DP; if(string[i] == '\0') for(; i < 8; i++) _segments[i]&=SEG_DP;
} }
void DualCl56::setSegments(const uint8_t segments, const uint8_t place)
{
_segments[place] = segments;
}

19
CL56.h
View File

@ -3,19 +3,19 @@
#include <avr/io.h> #include <avr/io.h>
#include "shiftreg.h" #include "shiftreg.h"
#define SEG_A 0b10000000
#define SEG_B 0b01000000
#define SEG_C 0b00100000
#define SEG_D 0b00010000
#define SEG_E 0b00001000
#define SEG_F 0b00000100
#define SEG_G 0b00000010
#define SEG_DP 0b00000001
class DualCl56 class DualCl56
{ {
public: public:
static constexpr uint8_t SEG_A = 0b10000000;
static constexpr uint8_t SEG_B = 0b01000000;
static constexpr uint8_t SEG_C = 0b00100000;
static constexpr uint8_t SEG_D = 0b00010000;
static constexpr uint8_t SEG_E = 0b00001000;
static constexpr uint8_t SEG_F = 0b00000100;
static constexpr uint8_t SEG_G = 0b00000010;
static constexpr uint8_t SEG_DP= 0b00000001;
static constexpr uint8_t COLEN_A = 0b00000010; static constexpr uint8_t COLEN_A = 0b00000010;
static constexpr uint8_t COLEN_B = 0b00100000; static constexpr uint8_t COLEN_B = 0b00100000;
static constexpr uint8_t DP_A = 0b00000000; static constexpr uint8_t DP_A = 0b00000000;
@ -79,5 +79,6 @@ class DualCl56
void tick(); void tick();
void setString(const char* string, const uint8_t dp = 0); void setString(const char* string, const uint8_t dp = 0);
void setSegments(const uint8_t segments, const uint8_t place);
}; };

View File

@ -19,7 +19,7 @@ set(COMPILE_FLAGS "" CACHE STRING "Additional Compiler Flags")
# Set own source files # Set own source files
# Simply list all your C / C++ source (not header!) files here # Simply list all your C / C++ source (not header!) files here
set(SRC_FILES main.cpp serial.cpp W433DataReciver.cpp CL56.cpp ds1302.cpp) set(SRC_FILES main.cpp serial.cpp W433DataReciver.cpp CL56.cpp ds1302.cpp dht11.cpp WirelessRelay.cpp item.cpp)
# Compiler suite specification # Compiler suite specification
set(CMAKE_C_COMPILER /usr/bin/avr-gcc) set(CMAKE_C_COMPILER /usr/bin/avr-gcc)

View File

@ -1,231 +1,144 @@
#include "W433DataReciver.h" #include "W433DataReciver.h"
#include <util/crc16.h>
#include "writepin.h" #include "writepin.h"
#include <stdlib.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include "serial.h"
W433DataReciver* W433DataReciver::instance = nullptr; W433DataReciver* W433DataReciver::instance = nullptr;
W433DataReciver::W433DataReciver(volatile unsigned char* const port , const unsigned char pin, volatile uint16_t * timerRegister, volatile uint8_t* const timerOverflowRegister, void (* const packetCallback)(uint32_t, void*), void* const userData, void (*errorCodeHandler)(uint8_t, void*) ): W433DataReciver::W433DataReciver(volatile unsigned char* const portIn, const unsigned char pinIn,
_port(port), _pin(pin), _timerRegister(timerRegister), _timerOverflowRegister(timerOverflowRegister), _packetCallback(packetCallback), _errorCodeHandler(errorCodeHandler), _userData(userData) void (*packetCallbackIn)(uint32_t, void*), void* userDataIn,
void (*errorCodeHandlerIn)(uint8_t, void*)):
port(portIn), pin(pinIn),
packetCallback(packetCallbackIn), errorCodeHandler(errorCodeHandlerIn), userData(userDataIn)
{ {
instance = this; instance = this;
for(uint8_t i = 0; i < 33; i++) timesBuffer[i] = 0;
} }
W433DataReciver::~W433DataReciver() W433DataReciver::~W433DataReciver()
{ {
instance = nullptr; instance = nullptr;
} }
void W433DataReciver::staticInterrupt() void W433DataReciver::staticInterrupt()
{ {
if(instance != nullptr) instance->interrupt(); if(instance != nullptr)
instance->interrupt();
} }
int8_t W433DataReciver::reciveBit(uint8_t index) uint16_t W433DataReciver::calcCrc(uint32_t data)
{ {
if( uint16_t crc = 0xffff;
timesBuffer[index] < 0 && uint8_t* ptr = reinterpret_cast<uint8_t*>(&data);
isTime(timesBuffer[index+1], SMALL_TIME, true, SMALL_TIME_TOLERANCE) && for(size_t i = 0; i < sizeof(data); ++i)
isTime(timesBuffer[index+2], LARGE_TIME, false, LARGE_TIME_TOLERANCE) //&& crc = _crc_ccitt_update(crc, ptr[i]);
//isTime(timesBuffer[index+3], SMALL_TIME, true, SMALL_TIME_TOLERANCE) return crc;
)
{
return 1;
}
else if(
timesBuffer[index] < 0 &&
isTime(timesBuffer[index+1], LARGE_TIME, true, LARGE_TIME_TOLERANCE) &&
isTime(timesBuffer[index+2], SMALL_TIME, false, SMALL_TIME_TOLERANCE) //&&
//isTime(timesBuffer[index+3], SMALL_TIME, true, SMALL_TIME_TOLERANCE)
)
{
return 0;
}
else return -1;
} }
void W433DataReciver::waitForReciveIdle(const uint16_t timeoutMs) uint8_t W433DataReciver::symbolDecode(uint8_t symbol)
{ {
uint16_t counter = 0; switch(symbol)
while(true)
{
while(counter < timeoutMs && state != LOOKING_FOR_SYNC)
{
_delay_ms(1);
++counter;
}
_delay_ms(500);
counter+=500;
if(state == LOOKING_FOR_SYNC || counter >= timeoutMs) break;
}
}
bool W433DataReciver::isTime(int16_t input, const uint16_t time, const bool state, const uint16_t tollerance)
{
if((state && input < 0) || (!state && input > 0)) return false;
input = abs(input);
return input < (int16_t)(time+tollerance) && input > (int16_t)(time-tollerance);
}
bool W433DataReciver::reciveSync(const uint16_t elapsedTime)
{
if(elapsedTime < SYNC_TIME+SYNC_TIME_TOLERANCE && elapsedTime > SYNC_TIME-SYNC_TIME_TOLERANCE)
{
++syncCount;
}
else
{ {
if(syncCount > 4 && syncFailCount < 3) ++syncFailCount; case 0xe:
else return 1;
case 0x13:
return 2;
case 0x15:
return 3;
case 0x16:
return 4;
case 0x19:
return 5;
case 0x1a:
return 6;
case 0x1c:
return 7;
case 0x23:
return 8;
case 0x25:
return 9;
case 0x26:
return 10;
case 0x29:
return 11;
case 0x2a:
return 12;
case 0x2c:
return 13;
case 0x32:
return 14;
case 0x34:
return 15;
case 0xd:
default:
return 0;
}
}
void W433DataReciver::pll(bool sample)
{
// Integrate each sample
if(sample)
rxIntegrator++;
if (sample != prevSample)
{
pllRamp += pllRamp < PLL_RAMP_TRANSITION ? PLL_RAMP_INC_RETARD : PLL_RAMP_INC_ADVANCE;
prevSample = sample;
}
else
{
pllRamp += PLL_RAMP_INC_STEP;
}
if (pllRamp >= PLL_RAMP_LEN)
{
rxBits >>= 1;
if (rxIntegrator >= 5)
rxBits |= 0x800;
pllRamp -= PLL_RAMP_LEN;
rxIntegrator = 0;
if(mode == MODE_RECEIVING)
{ {
//if(syncCount > 7) error(ERR_SYNC_FAIL); if (++rxCount >= 12)
setState(LOOKING_FOR_SYNC); {
uint8_t currentByte = (symbolDecode(rxBits & 0x3f)) | symbolDecode(rxBits >> 6) << 4;
rxBuf[PACKET_LENGTH-1-(rxLen++)] = currentByte;
if (rxLen >= PACKET_LENGTH)
{
mode = MODE_SEARCHING;
uint32_t* packet = reinterpret_cast<uint32_t*>(rxBuf+2);
uint16_t crc = rxBuf[0] << 8 | rxBuf[1];
uint16_t crcC = calcCrc(*packet);
if(crc != crcC)
{
if(errorCodeHandler)
errorCodeHandler(ERROR_CRC, userData);
}
else
{
packetCallback(*packet, userData);
}
}
rxCount = 0;
}
}
else if (rxBits == 0xb38)
{
mode = MODE_RECEIVING;
rxCount = 0;
rxLen = 0;
} }
} }
if(syncCount > 10) return true;
else return false;
}
bool W433DataReciver::recivedByte(const uint16_t elapsedTime)
{
timesBuffer[timesBufferIndex] = readPin(_port, _pin) ? 0-elapsedTime : elapsedTime;
++timesBufferIndex;
return timesBufferIndex == 32;
}
uint8_t W433DataReciver::assmbleByte()
{
uint8_t byte = 0;
for(uint8_t i = 0; i < 8; ++i)
{
int8_t bit = reciveBit(i*4);
if(bit >= 0) byte = byte | (bit << (7-i));
else
{
setState(LOOKING_FOR_SYNC);
error(ERR_BYTE_ASM);
}
}
timesBufferIndex = 0;
return byte;
}
void W433DataReciver::error(const uint8_t errorCode)
{
if(_errorCodeHandler != nullptr) (*_errorCodeHandler)(errorCode, _userData);
}
void W433DataReciver::setState(const uint8_t stateIn)
{
TIMSK2 = stateIn == LOOKING_FOR_SYNC;
state = stateIn;
timesBufferIndex = 0;
packetIndex = 0;
syncCount = 0;
syncFailCount = 0;
} }
void W433DataReciver::interrupt() void W433DataReciver::interrupt()
{ {
uint16_t elapsedTime = polarity*(((*_timerOverflowRegister & 0x01) ? *_timerRegister+(UINT16_MAX - previousTime) : *_timerRegister - previousTime)/TICKS_PER_US); pll(readPin(port, pin));
if(elapsedTime < DISCARD_TIME)
{
if(timesBufferIndex > 0 && elapsedTime + abs(timesBuffer[timesBufferIndex-1]) < LARGE_TIME+LARGE_TIME_TOLERANCE)
{
previousTime = *_timerRegister - elapsedTime - abs(timesBuffer[timesBufferIndex-1]);
timesBufferIndex-=1;
}
return;
}
previousTime = *_timerRegister;
*_timerOverflowRegister = *_timerOverflowRegister | 0x01;
if(state == LOOKING_FOR_SYNC && reciveSync(elapsedTime))
{
setState(LOOKING_FOR_SYNC_END);
}
else if(state == LOOKING_FOR_SYNC_END)
{
if(elapsedTime > SYNC_TIME + SYNC_END_TIME_TOLERANCE)
{
if(elapsedTime < LARGE_TIME - LARGE_TIME_TOLERANCE)
{
setState(LOOKING_FOR_SYNC);
error(ERR_NO_SYNC_END);
}
else
{
timesBuffer[0] = -LARGE_TIME;
setState(LOOKING_FOR_SIGNATURE);
++timesBufferIndex;
}
}
}
else if(state == LOOKING_FOR_SIGNATURE)
{
if(recivedByte(elapsedTime))
{
uint8_t recivedSignature = assmbleByte();
if( recivedSignature == signature) setState(RECVING_PACKET);
else
{
error(ERR_WRONG_SIG);
setState(LOOKING_FOR_SYNC);
}
}
}
else if( state == RECVING_PACKET )
{
if(recivedByte(elapsedTime))
{
uint8_t packetByte = assmbleByte();
packet = packet | ((uint32_t)packetByte) << ((3-packetIndex)*8);
++packetIndex;
if(packetIndex > 3)
{
packetIndex = 0;
timesBufferIndex = 0;
setState(RECVING_PACKET_CHECKSUM);
}
}
}
else if(state == RECVING_PACKET_CHECKSUM)
{
if(recivedByte(elapsedTime))
{
uint8_t recivedChecksum = assmbleByte();
volatile uint8_t* buffer = reinterpret_cast<volatile uint8_t*>(&packet);
uint8_t computedChecksum = 0;
for(uint8_t j = 0; j < sizeof(packet); j++) for(uint8_t i = 0; i < 8; i++) computedChecksum = computedChecksum + ((buffer[j] & ( 1 << (8 - i))) >> (8 - i));
//for(uint8_t j = 0; j < sizeof(packet); j++) for(uint8_t i = 0; i < 8; i++) computedChecksum = computedChecksum + (buffer[j] & ( 1 << (8 - i)));
if(computedChecksum == recivedChecksum)
{
#ifdef USE_RINGBUFFER
_ringBuffer.write(const_cast<uint8_t*>(buffer), sizeof(packet));
#endif
if(_packetCallback != nullptr)(*_packetCallback)(packet, _userData);
}
else error(ERR_CHECKSUM);
packet = 0;
setState(LOOKING_FOR_SYNC);
}
}
} }
#ifdef USE_RINGBUFFER uint16_t W433DataReciver::calculateOverflowRegister(uint16_t bitRate, uint16_t devisor)
RingBuffer<W433DataReciver::RINGBUFFER_LENGTH, uint8_t>* W433DataReciver::getRingBuffer()
{ {
return &_ringBuffer; return (F_CPU /(8UL*devisor))/bitRate;
} }
#endif

View File

@ -1,94 +1,63 @@
#pragma once #pragma once
#include <stdint.h>
#include "ringbuffer.h"
//#define USE_RINGBUFFER #include <stdlib.h>
#include <stdint.h>
class W433DataReciver class W433DataReciver
{ {
public: public:
static constexpr int ERROR_CRC = 1;
static constexpr uint8_t RINGBUFFER_LENGTH = 32; static constexpr int SAMPLES_PER_BIT = 8;
static constexpr int PLL_RAMP_LEN = 160;
//errors static constexpr int PLL_RAMP_INC_STEP = PLL_RAMP_LEN/SAMPLES_PER_BIT;
static constexpr uint8_t ERR_SYNC_FAIL = 1; static constexpr int PLL_RAMP_TRANSITION = PLL_RAMP_LEN/2;
static constexpr uint8_t ERR_NO_SYNC_END = 2; static constexpr int PLL_RAMP_INC_RETARD = PLL_RAMP_INC_STEP-9;
static constexpr uint8_t ERR_BYTE_ASM = 3; static constexpr int PLL_RAMP_INC_ADVANCE = PLL_RAMP_INC_STEP+9;
static constexpr uint8_t ERR_WRONG_SIG = 4; static constexpr int PLL_HEADER_LEN_BITS = 8;
static constexpr uint8_t ERR_CHECKSUM = 5; static constexpr int PACKET_LENGTH = sizeof(uint32_t)+2;
private: private:
static W433DataReciver* instance; static constexpr int MODE_SEARCHING = 0;
static constexpr int MODE_RECEIVING = 1;
//constants static W433DataReciver* instance;
static constexpr uint8_t CLOCK_DEVIDER = 1;
static constexpr uint16_t LARGE_TIME = 2000;
static constexpr uint16_t SMALL_TIME = 500;
static constexpr uint16_t SYNC_TIME = 800;
static constexpr uint8_t SYNC_TIME_TOLERANCE = SYNC_TIME*0.20;
static constexpr uint16_t SYNC_END_TIME_TOLERANCE = SYNC_TIME*0.50;
static constexpr uint16_t LARGE_TIME_TOLERANCE = LARGE_TIME*0.30;
static constexpr uint8_t SMALL_TIME_TOLERANCE = SMALL_TIME*0.30;
static constexpr uint16_t DISCARD_TIME = SMALL_TIME*0.6;
static constexpr uint16_t TICKS_PER_US = (F_CPU) / (1000000*CLOCK_DEVIDER) ;
static constexpr uint8_t signature = 0xA5;
static constexpr int8_t polarity = 1; volatile unsigned char *port;
unsigned char pin;
static constexpr uint8_t LOOKING_FOR_SYNC = 0; bool prevSample = 0;
static constexpr uint8_t LOOKING_FOR_SYNC_END = 1; uint8_t pllRamp = 0;
static constexpr uint8_t LOOKING_FOR_SIGNATURE = 2; uint8_t rxIntegrator = 0;
static constexpr uint8_t RECVING_PACKET = 3;
static constexpr uint8_t RECVING_PACKET_CHECKSUM = 4;
//variables uint16_t rxBits = 0;
volatile unsigned char *_port;
unsigned char _pin;
volatile uint16_t *_timerRegister; uint8_t mode = MODE_SEARCHING;
volatile uint8_t *_timerOverflowRegister;
#ifdef USE_RINGBUFFER uint8_t rxBuf[PACKET_LENGTH];
RingBuffer<RINGBUFFER_LENGTH, uint8_t> _ringBuffer; uint8_t rxCount = 0;
#endif volatile uint8_t rxLen = 0;
volatile uint16_t previousTime = 0; void (* const packetCallback)(uint32_t, void*);
volatile uint8_t timesBufferIndex = 0; void (* const errorCodeHandler)(uint8_t, void*);
volatile int16_t timesBuffer[33]; void* const userData;
volatile uint8_t packetIndex = 0; private:
volatile uint32_t packet = 0;
void (* const _packetCallback)(uint32_t, void*); static uint16_t calcCrc(uint32_t data);
void (* const _errorCodeHandler)(uint8_t, void*); static uint8_t symbolDecode(uint8_t symbol);
void* const _userData; void pll(bool sample);
volatile uint8_t syncCount = 0;
volatile uint8_t syncFailCount = 0;
volatile uint8_t state = 0;
//private functions
int8_t reciveBit(uint8_t index);
inline uint8_t assmbleByte();
inline void setState(const uint8_t stateIn);
inline bool recivedByte(const uint16_t elapsedTime);
inline bool reciveSync(const uint16_t elapsedTime);
inline void error(const uint8_t errorCode);
static inline bool isTime(int16_t input, const uint16_t time, const bool state = true, const uint16_t tollerance = 100);
public: public:
W433DataReciver(volatile unsigned char* const port , const unsigned char pin, volatile uint16_t * timerRegister, volatile uint8_t* const timerOverflowRegister, void (*packetCallback)(uint32_t, void*) = nullptr, void* userData = nullptr, void (*errorCodeHandler)(uint8_t, void*) = nullptr ); W433DataReciver(volatile unsigned char* const portIn, const unsigned char pinIn, void (*packetCallbackIn)(uint32_t,
~W433DataReciver(); void*),
static void initTimer(); void* userDataIn = nullptr, void (*errorCodeHandlerIn)(uint8_t, void*) = nullptr );
static void staticInterrupt(); ~W433DataReciver();
void waitForReciveIdle(const uint16_t timeoutMs = 10000);
void interrupt(); static void staticInterrupt();
#ifdef USE_RINGBUFFER void interrupt();
RingBuffer<RINGBUFFER_LENGTH, uint8_t>* getRingBuffer();
#endif static uint16_t calculateOverflowRegister(uint16_t bitRate, uint16_t devisor);
}; };

239
main.cpp
View File

@ -15,11 +15,20 @@
#include "ds1302.h" #include "ds1302.h"
#include "sensor.h" #include "sensor.h"
#include "pwm.h" #include "pwm.h"
#include "dht11.h"
#include "WirelessRelay.h"
//#define HAS_DHT
#define HAS_TRANSMITTER
//#define HAS_RECIVER
#define MAX_SENSORS 32 #define MAX_SENSORS 32
#define COMMAND_BUFFER_SIZE 64 #define COMMAND_BUFFER_SIZE 64
#define SNPRINTF_BUFFER_SIZE 96 #define SNPRINTF_BUFFER_SIZE 96
#define welcomeString "HELO "
static constexpr bool bdayMsg = false;
void buttonHandler(uint8_t index, uint8_t type, void* data); void buttonHandler(uint8_t index, uint8_t type, void* data);
SVector<Sensor, MAX_SENSORS> sensors; SVector<Sensor, MAX_SENSORS> sensors;
ShiftReg<16> shiftReg(&PORTB, PB3, PB2, PB1); ShiftReg<16> shiftReg(&PORTB, PB3, PB2, PB1);
@ -27,11 +36,30 @@ DS1302 clock(&PORTC, &PINC, &DDRC, PC0, PC2, PC1);
DualCl56 display(&shiftReg); DualCl56 display(&shiftReg);
Buttons buttons(&buttonHandler); Buttons buttons(&buttonHandler);
#ifdef HAS_DHT
#define DPY_FIXED_ITEMS 4
#else
#define DPY_FIXED_ITEMS 2
#endif
static constexpr uint8_t almA = 0b01;
static constexpr uint8_t almB = 0b10;
uint8_t displaying = 0; uint8_t displaying = 0;
uint8_t alm = 0;
volatile bool setting = false;
volatile int8_t settingOffset = 0;
volatile bool ringging = false;
char buffer[SNPRINTF_BUFFER_SIZE]; char buffer[SNPRINTF_BUFFER_SIZE];
volatile bool sensorsPaused=true; volatile bool sensorsPaused = true;
volatile bool relaySetting = false;
volatile uint8_t timer = 0;
ISR(INT1_vect) ISR(INT1_vect)
{ {
@ -42,15 +70,40 @@ ISR(TIMER2_OVF_vect)
{ {
display.tick(); display.tick();
buttons.tick(); buttons.tick();
if(ringging && ((timer % 4 == 0 && timer < 128) || (timer > 128 && timer % 16 == 0)) ) writePin(&PORTD, PD4, true);
else writePin(&PORTD, PD4, false);
++timer;
} }
void buttonHandler(uint8_t index, uint8_t type, void* data) void buttonHandler(uint8_t index, uint8_t type, void* data)
{ {
if(index == 0 && type == Buttons::RELEASED) if(!setting)
{ {
if(++displaying < sensors.count()+2); if(index == 0 && type == Buttons::RELEASED)
else displaying = 0; {
} if(++displaying < sensors.count()+DPY_FIXED_ITEMS);
else displaying = 0;
}
else if(index == 0 && type == Buttons::LONG_PRESSED)
{
relaySetting = !relaySetting;
}
else if(index == 1 && type == Buttons::RELEASED )
{
if(!ringging) if(++alm > 3) alm = 0;
else ringging = false;
}
else if(index == 1 && type == Buttons::LONG_PRESSED )
{
setting = true;
}
}
else
{
if(index == 1 && type == Buttons::LONG_PRESSED ) setting = false;
else if(index == 0 && type == Buttons::RELEASED ) settingOffset += 10;
else if(index == 1 && type == Buttons::RELEASED ) settingOffset -= 1;
}
} }
void printSensor(const Sensor& sensor, Serial* serial) void printSensor(const Sensor& sensor, Serial* serial)
@ -152,7 +205,7 @@ void serialDispatch(Serial* serial, SVector<Sensor, MAX_SENSORS>* sensors)
DS1302::Timeval time = {atoi(sec),atoi(min),atoi(hour),atoi(day),atoi(mon),atoi(year)}; DS1302::Timeval time = {atoi(sec),atoi(min),atoi(hour),atoi(day),atoi(mon),atoi(year)};
clock.setTime(time); clock.setTime(time);
serial->write_p(PSTR("date and time set\n")); serial->write_p(PSTR("date and time set\n"));
display.setString("SET"); display.setString("SET ");
_delay_ms(1000); _delay_ms(1000);
} }
else serial->write_p(PSTR("usage: set [yyyy] [mm] [dd] [hh] [mm] [ss]\n")); else serial->write_p(PSTR("usage: set [yyyy] [mm] [dd] [hh] [mm] [ss]\n"));
@ -195,13 +248,11 @@ void serialDispatch(Serial* serial, SVector<Sensor, MAX_SENSORS>* sensors)
} }
else if(strcmp(token, "beep") == 0) else if(strcmp(token, "beep") == 0)
{ {
for(uint16_t i = 0; i < 250; ++i) serial->write_p(PSTR("Beeping\n"));
{ ringging = true;
writePin(&PORTD, PD4, true); _delay_ms(1000);
_delay_us(500); serial->write_p(PSTR("Done\n"));
writePin(&PORTD, PD4, false); ringging = false;
_delay_us(1000);
}
} }
else if(strcmp(token, "help") == 0) else if(strcmp(token, "help") == 0)
{ {
@ -212,7 +263,7 @@ void serialDispatch(Serial* serial, SVector<Sensor, MAX_SENSORS>* sensors)
} }
} }
void displayItems(const DS1302::Timeval& time) void displayItems(const DS1302::Timeval& time, int16_t temp, int16_t humid)
{ {
switch(displaying) switch(displaying)
{ {
@ -220,27 +271,64 @@ void displayItems(const DS1302::Timeval& time)
writePin(&PORTB, PB4, time.sec % 2); writePin(&PORTB, PB4, time.sec % 2);
snprintf(buffer, 9, " %02u%02u", time.hour, time.min); snprintf(buffer, 9, " %02u%02u", time.hour, time.min);
display.setString(buffer); display.setString(buffer);
display.setSegments((alm & almA ? DualCl56::SEG_A : 0) | (alm & almB ? DualCl56::SEG_D : 0), 0);
break; break;
case 1: case 1:
writePin(&PORTB, PB4, false); writePin(&PORTB, PB4, false);
snprintf(buffer, 9, "%02u%02u%04u", time.day, time.month, time.year); snprintf(buffer, 9, "%02u%02u%04u", time.day, time.month, time.year);
display.setString(buffer, DualCl56::DP_B | DualCl56::DP_D); display.setString(buffer, DualCl56::DP_B | DualCl56::DP_D);
break; break;
#ifdef HAS_DHT
case 2:
writePin(&PORTB, PB4, false);
snprintf(buffer, 9, "0 1%4u", temp);
display.setString(buffer, DualCl56::DP_G);
break;
case 3:
writePin(&PORTB, PB4, false);
snprintf(buffer, 9, "0 2%4u", humid);
display.setString(buffer, DualCl56::DP_G);
break;
#endif
default: default:
if(displaying == 2 && sensors.count() == 0) display.setString("0 SENSOR"); writePin(&PORTB, PB4, false);
else snprintf(buffer, 9, "%u%3u%4u",
{ sensors[displaying-DPY_FIXED_ITEMS].id,
writePin(&PORTB, PB4, false); sensors[displaying-DPY_FIXED_ITEMS].type,
snprintf(buffer, 9, "%u%3u%4u", sensors[displaying-2].id, sensors[displaying-2].type, sensors[displaying-2].field); sensors[displaying-DPY_FIXED_ITEMS].field);
display.setString(buffer, sensors[displaying-2].type == 1 || sensors[displaying-2].type == 2 ? DualCl56::DP_G : 0); display.setString(buffer, sensors[displaying-DPY_FIXED_ITEMS].type == 1 || sensors[displaying-2].type == 2 ? DualCl56::DP_G : 0);
}
} }
} }
void setAlarm(DS1302::Timeval* alarm, uint8_t leadingSegment = 0)
{
writePin(&PORTB, PB4, true);
while(setting)
{
if(settingOffset+alarm->min > 59)
{
if(++alarm->hour > 23) alarm->hour = 0;
alarm->min = settingOffset+alarm->min-60;
}
else if(settingOffset+alarm->min < 0)
{
if(alarm->hour-1 < 0) alarm->hour = 24;
--alarm->hour;
alarm->min = settingOffset+alarm->min+60;
}
else alarm->min += settingOffset;
settingOffset = 0;
snprintf(buffer, 9, "S %02u%02u", alarm->hour, alarm->min);
display.setString(buffer);
display.setSegments(leadingSegment, 1);
}
writePin(&PORTB, PB4, false);
}
int main() int main()
{ {
DDRB = (1 << PB1) | ( 1 << PB2) | ( 1 << PB3) | ( 1 << PB4) | ( 1 << PB5); DDRB = (1 << PB1) | ( 1 << PB2) | ( 1 << PB3) | ( 1 << PB4) | ( 1 << PB5);
DDRD = 1<<PD4; DDRD = (1<<PD4) | (1<<PD2);
PORTD |= (1<<PD6) | (1<<PD7); PORTD |= (1<<PD6) | (1<<PD7);
TCCR2B = 1<<CS22; TCCR2B = 1<<CS22;
@ -254,42 +342,127 @@ int main()
sei(); sei();
Serial serial; Serial serial;
serial.write_p(PSTR("SensorDisplay v0.1 starting\n")); serial.write_p(PSTR("SensorDisplay v0.4 starting\n"));
DS1302::Timeval alarmA = EEPROM_read_class<DS1302::Timeval>(128);
DS1302::Timeval alarmB = EEPROM_read_class<DS1302::Timeval>(128+64);
DS1302::Timeval time = clock.getTime(); DS1302::Timeval time = clock.getTime();
alm = EEPROM_read_char(0);
uint8_t oldAlm = alm;
#ifdef HAS_TRANSMITTER
char name[] = "relay";
WirelessRelay relay(0b1011010001000000, name);
#endif
#ifdef HAS_DHT
Dht11 sensor(&PORTD, &PIND, &DDRD, PD2);
#endif
if(time.day == 28 && time.month == 5) if(time.day == 28 && time.month == 5)
{ {
display.setString("HAPPY"); if constexpr(bdayMsg)
_delay_ms(1000); {
display.setString("b-DAY"); display.setString("HAPPY ");
_delay_ms(1000); _delay_ms(1000);
display.setString("SASA"); display.setString("b-DAY ");
_delay_ms(1000); _delay_ms(1000);
display.setString("SASA ");
_delay_ms(1000);
}
} }
else else
{ {
display.setString("HELOJANA"); display.setString(welcomeString);
_delay_ms(1000); _delay_ms(1000);
} }
#ifdef HAS_DHT
sensor.read();
_delay_ms(1000);
sensor.read();
#endif
W433DataReciver reciver(&PIND, PD3, &TCNT1, &TIFR1, &packetHandler, reinterpret_cast<void*>(&serial), &reciverError); W433DataReciver reciver(&PIND, PD3, &TCNT1, &TIFR1, &packetHandler, reinterpret_cast<void*>(&serial), &reciverError);
uint8_t deleteDate = 0; uint8_t deleteDate = 0;
serial.write_p(PSTR("Ready\n")); serial.write_p(PSTR("Ready\n"));
uint16_t i = 0;
bool oldRelaySetting = false;
while(true) while(true)
{ {
time = clock.getTime(); #ifdef HAS_DHT
displayItems(time); if((displaying == 2 || displaying == 3) && i%2048 == 0)
{
cli();
sensor.read();
sei();
}
#endif
if(alm != oldAlm)
{
oldAlm = alm;
EEPROM_write_char(0, alm);
}
#ifdef HAS_TRANSMITTER
if(oldRelaySetting != relaySetting)
{
writePin(&PORTB, PB4, false);
oldRelaySetting = relaySetting;
relay.setValue(relaySetting);
display.setString( relaySetting ? "RLY ON " : "RLY OFF ");
_delay_ms(1000);
}
#endif
if(setting)
{
setAlarm(&alarmA, DualCl56::SEG_A);
setting = true;
setAlarm(&alarmB, DualCl56::SEG_D);
EEPROM_write_class(128, alarmA);
EEPROM_write_class(128+64, alarmB);
}
time = clock.getTime();
#ifdef HAS_DHT
displayItems(time, sensor.temperature, sensor.humidity);
#else
displayItems(time, 0, 0);
#endif
if(time.hour == alarmA.hour && time.min == alarmA.min && time.sec == 0)
{
ringging = true;
}
if(time.hour == alarmB.hour && time.min == alarmB.min && time.sec == 0)
{
#ifdef HAS_TRANSMITTER
relay.setValue(true);
#else
ringging = true;
#endif
}
#ifdef HAS_RECIVER
serialDispatch(&serial, &sensors); serialDispatch(&serial, &sensors);
if(deleteDate != time.day) if(deleteDate != time.day)
{ {
displaying = 0; displaying = 0;
sensors.clear(); sensors.clear();
deleteDate = time.day; deleteDate = time.day;
display.setString("CLEAR ");
_delay_ms(1000);
} }
#endif
++i;
} }
return 0; return 0;