split into many files
add better outlier rejection add normalization add background removal
This commit is contained in:
518
main.cpp
518
main.cpp
@ -1,19 +1,13 @@
|
||||
#include <iostream>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/core/ocl.hpp>
|
||||
#include <opencv2/features2d.hpp>
|
||||
#include <opencv2/viz/types.hpp>
|
||||
#include <math.h>
|
||||
#include <unistd.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
|
||||
#include <string>
|
||||
#include "argpopt.h"
|
||||
|
||||
bool verbose = false;
|
||||
#include "unwrap.h"
|
||||
#include "bgremoval.h"
|
||||
#include "normalize.h"
|
||||
|
||||
void cd_to_exe_dir( char *argv[] )
|
||||
{
|
||||
@ -39,403 +33,6 @@ std::vector<cv::Mat> loadImages(char** fileNames)
|
||||
return images;
|
||||
}
|
||||
|
||||
|
||||
std::vector< std::vector<cv::Point2f > > sortPointsIntoRows(std::vector<cv::Point2f>& points)
|
||||
{
|
||||
|
||||
if(points.size() < 6) return std::vector< std::vector<cv::Point2f> >();
|
||||
|
||||
struct
|
||||
{
|
||||
bool operator()(const cv::Point2f& a, const cv::Point2f& b) const
|
||||
{
|
||||
return sqrt(a.y*a.y+a.x*a.x) < sqrt(b.y*b.y+b.x*b.x);
|
||||
}
|
||||
} lessDist;
|
||||
|
||||
std::vector<cv::Point2f>::iterator topLeftIt = std::min_element(points.begin(), points.end(), lessDist);
|
||||
std::vector<cv::Point2f>::iterator bottomRightIt = std::max_element(points.begin(), points.end(), lessDist);
|
||||
|
||||
cv::Point2f topLeft(topLeftIt[0]);
|
||||
cv::Point2f bottomRight(bottomRightIt[0]);
|
||||
|
||||
std::cout<<"topLeft "<<topLeft.x<<' '<<topLeft.y<<'\n';
|
||||
std::cout<<"bottomRight "<<bottomRight.x<<' '<<bottomRight.y<<'\n';
|
||||
|
||||
float fuzz = (bottomRight.x-topLeft.x)*0.01f;
|
||||
|
||||
for(size_t i = 0; i < points.size(); ++i)
|
||||
{
|
||||
if(points[i].x < topLeft.x-fuzz || points[i].y < topLeft.y-fuzz ||
|
||||
points[i].x > bottomRight.x+fuzz || points[i].y > bottomRight.y+fuzz)
|
||||
points.erase(points.begin()+i);
|
||||
}
|
||||
|
||||
std::sort(points.begin(), points.end(), [](const cv::Point2f& a, const cv::Point2f& b){return a.y < b.y;});
|
||||
|
||||
double accumulator = points[0].y+points[1].y;
|
||||
size_t accuCount = 2;
|
||||
float sigDist = (bottomRight.y-topLeft.y) / 20;
|
||||
|
||||
std::vector< std::vector<cv::Point2f> > result(1);
|
||||
result.back().push_back(points[0]);
|
||||
result.back().push_back(points[1]);
|
||||
|
||||
for(size_t i = 2; i < points.size(); ++i)
|
||||
{
|
||||
if( points[i].y - accumulator/accuCount > sigDist )
|
||||
{
|
||||
if(points.size() - i - 3 < 0) break;
|
||||
else
|
||||
{
|
||||
accumulator = points[i+1].y+points[i+2].y;
|
||||
accuCount = 2;
|
||||
}
|
||||
result.push_back(std::vector<cv::Point2f>());
|
||||
}
|
||||
result.back().push_back(points[i]);
|
||||
accumulator += points[i].y;
|
||||
++accuCount;
|
||||
}
|
||||
|
||||
for(auto& row : result) std::sort(row.begin(), row.end(), [](const cv::Point2f& a, const cv::Point2f& b){return a.x < b.x;});
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void drawRows(cv::Mat& image, const std::vector< std::vector<cv::Point2f > >& rows)
|
||||
{
|
||||
for(size_t i = 0; i < rows.size(); ++i)
|
||||
{
|
||||
for(size_t y = 0; y < rows[i].size(); ++y)
|
||||
{
|
||||
cv::circle(image, rows[i][y], 5, cv::viz::Color(128 * (i%3), 128 * ((i+1)%3), 128 * ((i+2)%3)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<cv::RotatedRect> fitEllipses(std::vector< std::vector<cv::Point2f > >& rows, bool remove = true)
|
||||
{
|
||||
if(rows.empty()) return std::vector<cv::RotatedRect>();
|
||||
|
||||
std::vector<cv::RotatedRect> ellipses;
|
||||
ellipses.reserve(rows.size());
|
||||
for(size_t i = 0; i < rows.size(); ++i)
|
||||
{
|
||||
if(rows[i].size() > 4) ellipses.push_back(cv::fitEllipse(rows[i]));
|
||||
else rows.erase(rows.begin()+i);
|
||||
}
|
||||
return ellipses;
|
||||
}
|
||||
|
||||
void drawEllipses(cv::Mat& image, const std::vector<cv::RotatedRect>& ellipses )
|
||||
{
|
||||
for(const auto& ellipse : ellipses)cv::ellipse(image, ellipse, cv::viz::Color(128,128,128));
|
||||
}
|
||||
|
||||
|
||||
struct DisplacmentMap
|
||||
{
|
||||
std::vector< std::vector<cv::Point2f> > destination;
|
||||
std::vector< std::vector<cv::Point2f> > source;
|
||||
};
|
||||
|
||||
DisplacmentMap calcDisplacementMap(const std::vector< std::vector<cv::Point2f > >& rows,
|
||||
const std::vector<cv::RotatedRect>& elipses)
|
||||
{
|
||||
if(rows.size() < 2 || rows.size() != elipses.size()) {
|
||||
std::cerr<<__func__<<": rows < 2 or rows != elipses\n";
|
||||
return DisplacmentMap();
|
||||
}
|
||||
|
||||
DisplacmentMap displacmentmap;
|
||||
|
||||
displacmentmap.destination.assign(rows.size(), std::vector<cv::Point2f>());
|
||||
displacmentmap.source = rows;
|
||||
|
||||
for(int i = 0; i < displacmentmap.destination.size(); ++i)
|
||||
displacmentmap.source[i].reserve(rows[i].size());
|
||||
|
||||
|
||||
std::cout<<__func__<<": "<<elipses[1].center.y-elipses[0].center.y<<'\n';
|
||||
|
||||
float meanYdist = 0;
|
||||
size_t j = 0;
|
||||
while(j < elipses.size()-1)
|
||||
{
|
||||
meanYdist += elipses[j+1].center.y-elipses[j].center.y;
|
||||
++j;
|
||||
}
|
||||
meanYdist = meanYdist/elipses.size();
|
||||
|
||||
std::cout<<__func__<<": meanYdist "<<meanYdist<<'\n';
|
||||
|
||||
for(int rowCnt = 0; rowCnt < rows.size(); ++rowCnt)
|
||||
{
|
||||
const std::vector<cv::Point2f>& row = rows[rowCnt];
|
||||
const cv::RotatedRect& elipse = elipses[rowCnt];
|
||||
|
||||
cv::Rect_<float> boundingRect = elipse.boundingRect2f();
|
||||
|
||||
std::cout<<__func__<<": Proc row "<<rowCnt<<'\n';
|
||||
|
||||
for(size_t i = 0; i < row.size(); ++i)
|
||||
{
|
||||
float yDest = rowCnt*meanYdist;
|
||||
|
||||
double normDist = ((row[i].x - boundingRect.x)/boundingRect.width-0.5)*2;
|
||||
double tau = asin(normDist);
|
||||
float xDest = (((2*tau)/M_PI)*500)+500;
|
||||
std::cout<<__func__<<": normDist "<<normDist<<" tau "<<tau<<" xDest "<<xDest<<'\n';
|
||||
displacmentmap.destination[rowCnt].push_back(cv::Point2f(xDest,yDest));
|
||||
}
|
||||
}
|
||||
return displacmentmap;
|
||||
}
|
||||
|
||||
float detimineXPitch(const std::vector<cv::Point2f>& row, float fuzz = 1.3f)
|
||||
{
|
||||
std::vector<float> xRowDists;
|
||||
for(size_t i = 0; i < row.size()-1; ++i)
|
||||
xRowDists.push_back(abs(row[i+1].x-row[i].x));
|
||||
float xMinDist = *std::min(xRowDists.begin(), xRowDists.end());
|
||||
|
||||
std::cout<<__func__<<": xMinDist "<<xMinDist<<'\n';
|
||||
|
||||
float meanXDistAccum = 0;
|
||||
size_t validCount = 0;
|
||||
for(size_t i = 0; i < xRowDists.size(); ++i)
|
||||
{
|
||||
if(xRowDists[i] < xMinDist*fuzz)
|
||||
{
|
||||
++validCount;
|
||||
meanXDistAccum+=xRowDists[i];
|
||||
}
|
||||
}
|
||||
return meanXDistAccum/validCount;
|
||||
}
|
||||
|
||||
|
||||
double distance(const cv::Point2f& a, const cv::Point2f& b)
|
||||
{
|
||||
return sqrt((a.y-b.y)*(a.y-b.y)+(a.x-b.x)*(a.x-b.x));
|
||||
}
|
||||
|
||||
bool findClosest(size_t& xIndex, size_t& yIndex,
|
||||
cv::Point2f point, const std::vector< std::vector<cv::Point2f> >& array,
|
||||
float xTolerance, float yTolerance)
|
||||
{
|
||||
size_t rowBelow = 0;
|
||||
while(rowBelow < array.size() && array[rowBelow][0].y < point.y) ++rowBelow;
|
||||
|
||||
if(rowBelow == array.size()) rowBelow = array.size()-1;
|
||||
|
||||
int rightAbove = -1;
|
||||
int rightBelow = 0;
|
||||
|
||||
while(rightBelow < array[rowBelow].size() && array[rowBelow][rightBelow].x < point.x ) ++rightBelow;
|
||||
|
||||
float distRB = distance(point, array[rowBelow][rightBelow]);
|
||||
float distLB = rightBelow > 0 ? distance(point, array[rowBelow][rightBelow-1]) : std::numeric_limits<float>::max();
|
||||
float distRA = std::numeric_limits<float>::max();
|
||||
float distLA = std::numeric_limits<float>::max();
|
||||
|
||||
if(rowBelow > 0)
|
||||
{
|
||||
while(rightAbove < array[rowBelow].size() && array[rowBelow-1][rightAbove].x < point.x ) ++rightAbove;
|
||||
distRA = distance(point, array[rowBelow-1][rightAbove]);
|
||||
if(rightAbove > 0) distLA = distance(point, array[rowBelow-1][rightAbove-1]);
|
||||
}
|
||||
|
||||
float* min = &distRB;
|
||||
if(distLB < *min) min = &distLB;
|
||||
if(distRA < *min) min = &distRA;
|
||||
if(distLA < *min) min = &distLA;
|
||||
|
||||
if(min == &distRB)
|
||||
{
|
||||
yIndex = rowBelow;
|
||||
xIndex = rightBelow;
|
||||
}
|
||||
else if(min == &distLB)
|
||||
{
|
||||
yIndex = rowBelow;
|
||||
xIndex = rightBelow-1;
|
||||
}
|
||||
else if(min == &distRA)
|
||||
{
|
||||
yIndex = rowBelow-1;
|
||||
xIndex = rightBelow;
|
||||
}
|
||||
else if(min == &distLA)
|
||||
{
|
||||
yIndex = rowBelow-1;
|
||||
xIndex = rightBelow-1;
|
||||
}
|
||||
return abs(array[yIndex][xIndex].x - point.x) < xTolerance && abs(array[yIndex][xIndex].y - point.y) < yTolerance;
|
||||
}
|
||||
|
||||
|
||||
void interpolateMissing(cv::Mat& mat)
|
||||
{
|
||||
for(size_t y = 0; y < mat.rows; y++)
|
||||
{
|
||||
float* col = mat.ptr<float>(y);
|
||||
for(int x = 0; x < mat.cols; ++x)
|
||||
{
|
||||
if(col[x] < 0)
|
||||
{
|
||||
int closestA = -1;
|
||||
int closestB = -1;
|
||||
int dist = std::numeric_limits<int>::max();
|
||||
for(int i = 0; i < mat.cols; ++i)
|
||||
{
|
||||
if(col[i] >= 0 && abs(i-x) <= dist)
|
||||
{
|
||||
closestB = closestA;
|
||||
closestA = i;
|
||||
dist = abs(i-x);
|
||||
}
|
||||
}
|
||||
float slope = (col[closestB] - col[closestA])/(closestB-closestA);
|
||||
col[x] = col[closestA] - (closestA-x)*slope;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void fillMissing(cv::Mat& mat)
|
||||
{
|
||||
for(size_t y = 0; y < mat.rows; y++)
|
||||
{
|
||||
float* col = mat.ptr<float>(y);
|
||||
for(int x = 0; x < mat.cols; ++x)
|
||||
{
|
||||
if(col[x] < 0)
|
||||
{
|
||||
if(y > 0 && mat.at<float>(x,y-1) >= 0)
|
||||
col[x] = mat.at<float>(x,y-1);
|
||||
else if(y < mat.rows && mat.at<float>(x,y+1) >= 0)
|
||||
col[x] = mat.at<float>(x,y+1);
|
||||
if((x+1 < mat.cols && col[x] > col[x+1]) || (x > 0 && col[x] < col[x-1]))
|
||||
col[x] = -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void sanityCheckMap(cv::Mat& mat, const float min, const float max)
|
||||
{
|
||||
for(size_t y = 0; y < mat.rows; y++)
|
||||
{
|
||||
float* col = mat.ptr<float>(y);
|
||||
for(int x = 0; x < mat.cols; ++x)
|
||||
{
|
||||
if(col[x] < min)
|
||||
col[x] = min;
|
||||
else if(col[x] > max)
|
||||
col[x] = max;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//dst(x,y) = src(map_x(x,y),map_y(x,y))
|
||||
void generateRemapMaps(const DisplacmentMap& map, cv::Mat& xMat, cv::Mat& yMat, const cv::Size& size, float fuzz = 1.3f)
|
||||
{
|
||||
if(map.destination.size() < 2)
|
||||
{
|
||||
std::cerr<<__func__<<": at least 2 rows are needed"<<std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
float yMeanDist = map.destination[1][0].y-map.destination[0][0].y;
|
||||
float xMeanDist = 0;
|
||||
for(size_t i = 0; i < map.destination.size(); ++i)
|
||||
{
|
||||
xMeanDist+=detimineXPitch(map.destination[i]);
|
||||
}
|
||||
xMeanDist/=map.destination.size();
|
||||
std::cout<<__func__<<": xMeanDist "<<xMeanDist<<'\n';
|
||||
|
||||
float xMin = std::numeric_limits<float>::max();
|
||||
float xMax = std::numeric_limits<float>::min();
|
||||
|
||||
for(auto& row: map.destination )
|
||||
{
|
||||
if(xMin > row.front().x )
|
||||
xMin = row.front().x;
|
||||
if(xMax < row.back().x)
|
||||
xMax = row.back().x;
|
||||
}
|
||||
|
||||
std::cout<<__func__<<": Grid: xMin "<<xMin<<'\n';
|
||||
std::cout<<__func__<<": Grid: grid xMax "<<xMax<<'\n';
|
||||
|
||||
size_t xGridSize = static_cast<size_t>(std::lround(abs((xMax-xMin)/xMeanDist))+1);
|
||||
xMat = cv::Mat::zeros(cv::Size(xGridSize, map.destination.size()), CV_32FC1);
|
||||
yMat = cv::Mat::zeros(cv::Size(xGridSize, map.destination.size()), CV_32FC1);
|
||||
|
||||
std::cout<<"Grid: "<<xGridSize<<'x'<<map.destination.size()<<'\n';
|
||||
|
||||
for(size_t y = 0; y < xMat.rows; y++)
|
||||
{
|
||||
float* colx = xMat.ptr<float>(y);
|
||||
float* coly = yMat.ptr<float>(y);
|
||||
for(int x = 0; x < xMat.cols; x++)
|
||||
{
|
||||
size_t xIndex;
|
||||
size_t yIndex;
|
||||
bool found = findClosest(xIndex, yIndex,
|
||||
cv::Point2f((x+1)*xMeanDist, (y)*yMeanDist),
|
||||
map.destination, xMeanDist/2, yMeanDist/2);
|
||||
std::cout<<__func__<<": found: "<<found<<' '<<xIndex<<"x"<<yIndex<<'\n';
|
||||
colx[x] = found ? map.source[yIndex][xIndex].x : -1;
|
||||
coly[x] = found ? map.source[yIndex][xIndex].y : -1;
|
||||
}
|
||||
}
|
||||
fillMissing(xMat);
|
||||
interpolateMissing(xMat);
|
||||
interpolateMissing(yMat);
|
||||
std::cout<<__func__<<": xMat \n"<<xMat<<'\n';
|
||||
std::cout<<__func__<<": yMat \n"<<yMat<<'\n';
|
||||
resize(xMat, xMat, size);
|
||||
resize(yMat, yMat, size);
|
||||
}
|
||||
|
||||
std::vector<cv::Point2f> detectPoints(cv::Mat& image)
|
||||
{
|
||||
cv::Mat gray;
|
||||
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);
|
||||
|
||||
//detect corners
|
||||
cv::Mat corners;
|
||||
cv::cornerHarris(gray, corners, 5, 5, 0.01);
|
||||
cv::normalize(corners, corners, 0, 255, cv::NORM_MINMAX, CV_32FC1, cv::Mat());
|
||||
cv::convertScaleAbs( corners, corners );
|
||||
cv::threshold(corners, corners, 40, 255, cv::THRESH_BINARY);
|
||||
|
||||
cv::waitKey(0);
|
||||
cv::imshow( "Viewer", corners );
|
||||
|
||||
//get middle of corners
|
||||
cv::SimpleBlobDetector::Params blobParams;
|
||||
blobParams.filterByArea = true;
|
||||
blobParams.minArea = 4;
|
||||
blobParams.maxArea = 50;
|
||||
blobParams.filterByColor = false;
|
||||
blobParams.blobColor = 255;
|
||||
blobParams.filterByInertia = false;
|
||||
blobParams.filterByConvexity = false;
|
||||
cv::Ptr<cv::SimpleBlobDetector> blobDetector = cv::SimpleBlobDetector::create(blobParams);
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
blobDetector->detect(corners, keypoints);
|
||||
|
||||
std::vector<cv::Point2f> points;
|
||||
cv::KeyPoint::convert(keypoints, points);
|
||||
|
||||
return points;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
cv::ocl::setUseOpenCL(false);
|
||||
@ -453,47 +50,90 @@ int main(int argc, char* argv[])
|
||||
return -1;
|
||||
}
|
||||
|
||||
for(auto& image : inImages)
|
||||
if(config.verbose)
|
||||
{
|
||||
cv::namedWindow( "Viewer", cv::WINDOW_NORMAL );
|
||||
cv::resizeWindow("Viewer", 960, 500);
|
||||
cv::imshow( "Viewer", image );
|
||||
std::vector<cv::Point2f > points = detectPoints(image);
|
||||
|
||||
std::vector< std::vector<cv::Point2f > > rows = sortPointsIntoRows(points);
|
||||
std::vector< cv::RotatedRect > ellipses = fitEllipses(rows);
|
||||
|
||||
cv::Mat pointsMat = cv::Mat::zeros(image.size(), CV_8UC3);
|
||||
|
||||
drawEllipses(pointsMat, ellipses);
|
||||
|
||||
std::cout<<"rows: "<<rows.size()<<'\n';
|
||||
|
||||
|
||||
DisplacmentMap dispMap = calcDisplacementMap(rows, ellipses);
|
||||
|
||||
drawRows(pointsMat, dispMap.source);
|
||||
|
||||
cv::waitKey(0);
|
||||
cv::imshow( "Viewer", pointsMat );
|
||||
|
||||
cv::Mat dispPointsDest = cv::Mat::zeros(cv::Size(cv::Size(1000,1000)), CV_8UC3);
|
||||
drawRows(dispPointsDest, dispMap.destination);
|
||||
|
||||
cv::waitKey(0);
|
||||
cv::imshow( "Viewer", dispPointsDest );
|
||||
}
|
||||
|
||||
|
||||
if(config.maps.empty())
|
||||
{
|
||||
cv::Mat mask;
|
||||
if(config.verbose)
|
||||
{
|
||||
cv::imshow( "Viewer", inImages[0] );
|
||||
cv::waitKey(0);
|
||||
}
|
||||
if(!config.bg.empty())
|
||||
{
|
||||
cv::Mat bg = cv::imread(config.bg);
|
||||
|
||||
if(bg.data)
|
||||
{
|
||||
createMask(inImages[0], mask, bg);
|
||||
if(config.verbose)
|
||||
{
|
||||
cv::Mat masked;
|
||||
inImages[0].copyTo(masked, mask);
|
||||
cv::imshow( "Viewer", masked );
|
||||
cv::waitKey(0);
|
||||
}
|
||||
}
|
||||
else std::cout<<"can not read background image from "<<config.bg<<'\n';
|
||||
}
|
||||
createRemapMap(inImages[0], config.inFileNames[0], mask, config.verbose);
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::FileStorage fs(config.maps, cv::FileStorage::READ);
|
||||
if (!fs.isOpened())
|
||||
{
|
||||
std::cerr<<"could not open maps file " <<config.maps<<'\n';
|
||||
return -1;
|
||||
}
|
||||
cv::Mat xMat;
|
||||
cv::Mat yMat;
|
||||
generateRemapMaps(dispMap, xMat, yMat, cv::Size(1000,1000));
|
||||
fs["xmat"]>>xMat;
|
||||
fs["ymat"]>>yMat;
|
||||
|
||||
cv::Mat remaped;
|
||||
cv::remap(image, remaped, xMat, yMat, cv::INTER_LINEAR);
|
||||
cv::waitKey(0);
|
||||
cv::imshow( "Viewer", remaped );
|
||||
cv::waitKey(0);
|
||||
cv::Mat norm;
|
||||
if(!config.norm.empty())
|
||||
{
|
||||
cv::Mat tmp = cv::imread(config.norm);
|
||||
if(!tmp.data)
|
||||
{
|
||||
std::cerr<<"could not open normalize file " <<config.norm<<'\n';
|
||||
}
|
||||
applyRemap(tmp, norm, xMat, yMat, cv::Size(900,1000));
|
||||
if(config.verbose)
|
||||
{
|
||||
cv::imshow("Viewer", norm );
|
||||
cv::waitKey(0);
|
||||
}
|
||||
}
|
||||
|
||||
for(auto& image : inImages)
|
||||
{
|
||||
if(config.verbose)
|
||||
{
|
||||
cv::imshow( "Viewer", image );
|
||||
cv::waitKey(0);
|
||||
}
|
||||
cv::Mat remaped;
|
||||
applyRemap(image, remaped, xMat, yMat, cv::Size(900,1000));
|
||||
if(norm.data) normalize(remaped, norm);
|
||||
cv::imshow( "Viewer", remaped );
|
||||
cv::waitKey(0);
|
||||
}
|
||||
}
|
||||
|
||||
if(config.verbose)
|
||||
{
|
||||
cv::destroyWindow("Viewer");
|
||||
cv::waitKey(0);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user