Fix group_texts not grouping texts to a single length when the number of samples is less than the number of threads used

This commit is contained in:
uvos 2024-05-08 22:37:42 +02:00
parent bc5321cb33
commit 0b39ba0843
2 changed files with 10 additions and 3 deletions

View File

@ -4,6 +4,7 @@ import typing
import datasets
import itertools
import transformers
import os
from dataclasses import dataclass
from torch.nn.utils.rnn import pad_sequence
@ -237,7 +238,7 @@ def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: D
train_dataset_tokenized = train_dataset_tokenized.map(
lambda example: group_texts(example, data_args.block_size),
batched=True,
num_proc=32,
num_proc=max(1, min(os.cpu_count(), int(len(train_dataset_tokenized['input_ids']) / (data_args.block_size * 10)))),
load_from_cache_file=True,
desc=f"Grouping texts in chunks of {data_args.block_size}")
@ -251,10 +252,15 @@ def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: D
eval_dataset_tokenized = eval_dataset_tokenized.map(
lambda example: group_texts(example, data_args.block_size),
batched=True,
num_proc=32,
num_proc=max(1, min(os.cpu_count(), int(len(eval_dataset_tokenized['input_ids']) / (data_args.block_size * 10)))),
load_from_cache_file=True,
desc=f"Grouping texts in chunks of {data_args.block_size}")
for ids in train_dataset_tokenized['input_ids']:
assert len(ids) == data_args.block_size
for ids in eval_dataset_tokenized['input_ids']:
assert len(ids) == data_args.block_size
return dict(
train_dataset=train_dataset_tokenized if do_train else None,
eval_dataset=eval_dataset_tokenized if do_eval else None,

View File

@ -101,7 +101,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
tokenizer = get_tokenizer(model.model, training_args.cache_dir, model_args)
if data_args.dataset.endswith("json"):
if data_args.dataset.endswith("json") or data_args.dataset.endswith("jsonl"):
print("Loading dataset in s2s mode")
data_module = create_data_module_s2s(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
elif data_args.data_from_hub:
@ -109,6 +109,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
else:
print("Loading dataset in txt mode")
data_module = create_data_module(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
dataset = {k: v for k, v in data_module.items() if k != 'predict_dataset'}
train_dataloader = torch.utils.data.DataLoader(
dataset['train_dataset'],