Inital commit
This commit is contained in:
95
arguments.py
Normal file
95
arguments.py
Normal file
@ -0,0 +1,95 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataArguments:
|
||||
eval_dataset_size: int = field(
|
||||
default=512, metadata={"help": "Size of validation dataset."}
|
||||
)
|
||||
source_max_len: int = field(
|
||||
default=512,
|
||||
metadata={"help": "Maximum source sequence length. Sequences will be right padded (and possibly truncated)."},
|
||||
)
|
||||
train_on_source: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Wether to train on the input in addition to the target text when in s2s mode."}
|
||||
)
|
||||
target_max_len: int = field(
|
||||
default=256,
|
||||
metadata={"help": "Maximum target sequence length. Sequences will be right padded (and possibly truncated)."},
|
||||
)
|
||||
dataset: str = field(
|
||||
default=None,
|
||||
metadata={"help": "A json file (s2s) or text file with the dataset to train on"}
|
||||
)
|
||||
block_size: int = field(
|
||||
default=512,
|
||||
metadata={"help": "size of the blocks the text is split into for training"},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
model_name_or_path: Optional[str] = field(
|
||||
default="EleutherAI/pythia-12b"
|
||||
)
|
||||
tokenizer: Optional[str] = field(
|
||||
default=None
|
||||
)
|
||||
trust_remote_code: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."}
|
||||
)
|
||||
max_instant_params: int = field(
|
||||
default=0,
|
||||
metadata={"help": "Maximum amount of paramters to optimize per step in millions"}
|
||||
)
|
||||
noresize: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Never resize tokenizer embeddings"}
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrainingArguments():
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None
|
||||
)
|
||||
adam8bit: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Use 8-bit adam."}
|
||||
)
|
||||
report_to: str = field(
|
||||
default='none',
|
||||
metadata={"help": "To use wandb or something else for reporting."}
|
||||
)
|
||||
resume: bool = field(default=False, metadata={"help": 'Resume from previous checkpoint'})
|
||||
ddp_find_unused_parameters: bool = field(default=True, metadata={"help": 'set if trainer should try to find unused parameters'})
|
||||
output_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'})
|
||||
per_device_train_batch_size: int = field(default=1, metadata={"help": 'The training batch size per GPU. Increase for better speed.'})
|
||||
gradient_accumulation_steps: int = field(default=16, metadata={"help": 'How many gradients to accumulate before to perform an optimizer step'})
|
||||
epochs: int = field(default=3, metadata={"help": 'How many epochs to train for'})
|
||||
weight_decay: float = field(default=0.0, metadata={"help": 'The L2 weight decay rate of AdamW'})
|
||||
learning_rate: float = field(default=0.0002, metadata={"help": 'The learnign rate'})
|
||||
adam_epsilon: float = field(default=1e-7, metadata={"help": 'Adam epsilon'})
|
||||
remove_unused_columns: bool = field(default=False, metadata={"help": 'Removed unused columns. Needed to make this codebase work.'})
|
||||
max_grad_norm: float = field(default=0.3, metadata={"help": 'Gradient clipping max norm. This is tuned and works well for all models tested.'})
|
||||
gradient_checkpointing: bool = field(default=True, metadata={"help": 'Use gradient checkpointing. You want to use this.'})
|
||||
fp16: bool = field(default=False, metadata={"help": 'Train in 16 bit mixed precision'})
|
||||
do_train: bool = field(default=True, metadata={"help": 'To train or not to train, that is the question?'})
|
||||
do_eval: bool = field(default=False, metadata={"help": 'To eval or not to eval, that is the question?'})
|
||||
lr_scheduler_type: str = field(default='constant',
|
||||
metadata={"help": 'Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis'})
|
||||
warmup_steps: float = field(default=0, metadata={"help": 'number of steps to do a warmup for'})
|
||||
logging_steps: int = field(default=10, metadata={"help": 'The frequency of update steps after which to log the loss'})
|
||||
group_by_length: bool = field(default=False,
|
||||
metadata={"help": 'Group sequences into batches with same length. Saves memory and speeds up training considerably.'})
|
||||
storage_fp16: bool = field(default=False, metadata={"help": 'Store untrained layers in 16bit'})
|
||||
save_steps: int = field(default=250, metadata={"help": 'How often to save a model'})
|
||||
max_checkpoints: int = field(default=0, metadata={"help": 'the maximum amount of checkpoints to save'})
|
||||
save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'})
|
||||
primary_device: str = field(default="cuda:0", metadata={"help": 'The primary device to use'})
|
||||
secondary_device: str = field(default="cuda:0", metadata={"help": 'The secondary device to use'})
|
||||
train_non_linear_layers: str = field(default=False, metadata={"help": 'train non linear layers'})
|
||||
flush_allocator: bool = field(default=False, metadata={"help": 'flush torches allocator on eatch iteration'})
|
29
convertinglinear.py
Normal file
29
convertinglinear.py
Normal file
@ -0,0 +1,29 @@
|
||||
import torch
|
||||
|
||||
|
||||
class ConvertingLinear(torch.nn.Linear):
|
||||
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None):
|
||||
super().__init__(in_features, out_features, bias, device, dtype)
|
||||
|
||||
def forward(self, input: torch.Tensor):
|
||||
output_dtype = input.dtype
|
||||
output_device = input.device
|
||||
if input.device != self.weight.device:
|
||||
input = input.to(self.weight.device)
|
||||
if input.dtype != self.weight.dtype:
|
||||
input = input.to(self.weight.dtype)
|
||||
output = torch.nn.Linear.forward(self, input)
|
||||
if torch.isnan(output).any() or self.weight.dtype != torch.float32:
|
||||
breakpoint()
|
||||
return output.to(output_device).to(output_dtype)
|
||||
|
||||
@classmethod
|
||||
def fromLinear(cls, in_module: torch.nn.Linear):
|
||||
new_module = torch.nn.utils.skip_init(cls, in_features=in_module.in_features,
|
||||
out_features=in_module.out_features,
|
||||
bias=in_module.bias is not None,
|
||||
device=in_module.weight.device,
|
||||
dtype=in_module.weight.dtype)
|
||||
new_module.weight = in_module.weight
|
||||
new_module.bias = in_module.bias
|
||||
return new_module
|
192
datamodules.py
Normal file
192
datamodules.py
Normal file
@ -0,0 +1,192 @@
|
||||
import copy
|
||||
import torch
|
||||
import typing
|
||||
import datasets
|
||||
import itertools
|
||||
import transformers
|
||||
from dataclasses import dataclass
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from arguments import DataArguments
|
||||
|
||||
IGNORE_INDEX = -100
|
||||
|
||||
|
||||
def group_texts(examples, block_size: int):
|
||||
# Concatenate all texts.
|
||||
concatenated_examples = {k: list(itertools.chain(*examples[k])) for k in examples.keys()}
|
||||
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
||||
# customize this part to your needs.
|
||||
if total_length >= block_size:
|
||||
total_length = (total_length // block_size) * block_size
|
||||
# Split by chunks of max_len.
|
||||
result = {k: [t[i: i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items()}
|
||||
result["labels"] = result["input_ids"].copy()
|
||||
return result
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataCollatorForCausalLM(object):
|
||||
tokenizer: transformers.PreTrainedTokenizer
|
||||
source_max_len: int
|
||||
target_max_len: int
|
||||
train_on_source: bool
|
||||
predict_with_generate: bool
|
||||
|
||||
def __call__(self, instances: typing.Sequence[typing.Dict]) -> typing.Dict[str, torch.Tensor]:
|
||||
# Extract elements
|
||||
sources = [f"{self.tokenizer.bos_token}{example['input']}" for example in instances]
|
||||
targets = [f"{example['output']}{self.tokenizer.eos_token}" for example in instances]
|
||||
# Tokenize
|
||||
tokenized_sources_with_prompt = self.tokenizer(
|
||||
sources,
|
||||
max_length=self.source_max_len,
|
||||
truncation=True,
|
||||
add_special_tokens=False,
|
||||
)
|
||||
tokenized_targets = self.tokenizer(
|
||||
targets,
|
||||
max_length=self.target_max_len,
|
||||
truncation=True,
|
||||
add_special_tokens=False,
|
||||
)
|
||||
# Build the input and labels for causal LM
|
||||
input_ids = []
|
||||
labels = []
|
||||
for tokenized_source, tokenized_target in zip(
|
||||
tokenized_sources_with_prompt['input_ids'],
|
||||
tokenized_targets['input_ids']
|
||||
):
|
||||
if not self.predict_with_generate:
|
||||
input_ids.append(torch.tensor(tokenized_source + tokenized_target))
|
||||
if not self.train_on_source:
|
||||
labels.append(
|
||||
torch.tensor([IGNORE_INDEX for _ in range(len(tokenized_source))] + copy.deepcopy(tokenized_target))
|
||||
)
|
||||
else:
|
||||
labels.append(torch.tensor(copy.deepcopy(tokenized_source + tokenized_target)))
|
||||
else:
|
||||
input_ids.append(torch.tensor(tokenized_source))
|
||||
# Apply padding
|
||||
padding_value = None
|
||||
if self.tokenizer.pad_token_id is not None:
|
||||
padding_value = self.tokenizer.pad_token_id
|
||||
elif self.tokenizer.eos_token_id is not None:
|
||||
padding_value = self.tokenizer.eos_token_id
|
||||
else:
|
||||
raise RuntimeError("Model dose not have a pad or eos token")
|
||||
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=padding_value)
|
||||
labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) if not self.predict_with_generate else None
|
||||
data_dict = {
|
||||
'input_ids': input_ids,
|
||||
'attention_mask': input_ids.ne(padding_value),
|
||||
}
|
||||
if labels is not None:
|
||||
data_dict['labels'] = labels
|
||||
return data_dict
|
||||
|
||||
|
||||
def create_data_module_s2s(tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments, do_train, do_eval, do_predict) -> typing.Dict:
|
||||
try:
|
||||
dataset = datasets.Dataset.from_json(path_or_paths=data_args.dataset)
|
||||
except FileNotFoundError as ex:
|
||||
raise ValueError(f"Error loading dataset from {data_args.dataset}, {ex}")
|
||||
|
||||
if do_eval or do_predict:
|
||||
if 'eval' in dataset:
|
||||
eval_dataset = dataset['eval']
|
||||
else:
|
||||
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
|
||||
dataset = dataset.train_test_split(
|
||||
test_size=data_args.eval_dataset_size, shuffle=True, seed=42
|
||||
)
|
||||
eval_dataset = dataset['test']
|
||||
eval_dataset = eval_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
|
||||
|
||||
if 'train' in dataset:
|
||||
train_dataset = dataset['train']
|
||||
else:
|
||||
train_dataset = dataset
|
||||
|
||||
train_dataset = train_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
|
||||
|
||||
data_collator = DataCollatorForCausalLM(
|
||||
tokenizer=tokenizer,
|
||||
source_max_len=data_args.source_max_len,
|
||||
target_max_len=data_args.target_max_len,
|
||||
train_on_source=data_args.train_on_source,
|
||||
predict_with_generate=False # args.predict_with_generate,
|
||||
)
|
||||
|
||||
return dict(
|
||||
train_dataset=train_dataset if do_train else None,
|
||||
eval_dataset=eval_dataset if do_eval else None,
|
||||
predict_dataset=eval_dataset if do_predict else None,
|
||||
data_collator=data_collator
|
||||
)
|
||||
|
||||
|
||||
def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments, do_train: bool, do_eval: bool, do_predict: bool) -> typing.Dict:
|
||||
try:
|
||||
dataset = datasets.load_dataset('text', data_files={'train': [data_args.dataset]})
|
||||
except FileNotFoundError as ex:
|
||||
raise ValueError(f"Error loading dataset from {data_args.dataset}, {ex}")
|
||||
|
||||
if data_args.block_size > tokenizer.model_max_length:
|
||||
raise ValueError(f"Block size of {data_args.block_size} is larger than the maximum size supported by the model: {tokenizer.model_max_length}")
|
||||
|
||||
def add_newline_fn(example):
|
||||
example['text'] = example['text'] + '\n'
|
||||
return example
|
||||
dataset = dataset.map(add_newline_fn)
|
||||
|
||||
eval_dataset = None
|
||||
if do_eval or do_predict:
|
||||
if 'eval' in dataset:
|
||||
eval_dataset = dataset['eval']
|
||||
else:
|
||||
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
|
||||
dataset = dataset.train_test_split(
|
||||
test_size=data_args.eval_dataset_size, shuffle=True, seed=42
|
||||
)
|
||||
eval_dataset = dataset['test']
|
||||
|
||||
if 'train' in dataset:
|
||||
train_dataset = dataset['train']
|
||||
else:
|
||||
train_dataset = dataset
|
||||
|
||||
train_dataset_tokenized = train_dataset.map(
|
||||
lambda example: tokenizer(example['text']),
|
||||
batched=True,
|
||||
remove_columns='text',
|
||||
num_proc=32,
|
||||
load_from_cache_file=True)
|
||||
train_dataset_tokenized = train_dataset_tokenized.map(
|
||||
lambda example: group_texts(example, data_args.block_size),
|
||||
batched=True,
|
||||
num_proc=32,
|
||||
load_from_cache_file=True,
|
||||
desc=f"Grouping texts in chunks of {data_args.block_size}")
|
||||
|
||||
eval_dataset_tokenized = None
|
||||
if eval_dataset is not None:
|
||||
eval_dataset_tokenized = eval_dataset.map(
|
||||
lambda example: tokenizer(example['text']),
|
||||
batched=True,
|
||||
remove_columns='text',
|
||||
num_proc=32)
|
||||
eval_dataset_tokenized = eval_dataset_tokenized.map(
|
||||
lambda example: group_texts(example, data_args.block_size),
|
||||
batched=True,
|
||||
num_proc=32,
|
||||
load_from_cache_file=True,
|
||||
desc=f"Grouping texts in chunks of {data_args.block_size}")
|
||||
|
||||
return dict(
|
||||
train_dataset=train_dataset_tokenized if do_train else None,
|
||||
eval_dataset=eval_dataset_tokenized if do_eval else None,
|
||||
predict_dataset=eval_dataset_tokenized if do_predict else None,
|
||||
data_collator=transformers.default_data_collator
|
||||
)
|
62
tokenizer.py
Normal file
62
tokenizer.py
Normal file
@ -0,0 +1,62 @@
|
||||
import transformers
|
||||
|
||||
from arguments import ModelArguments
|
||||
|
||||
|
||||
DEFAULT_PAD_TOKEN = "[PAD]"
|
||||
|
||||
|
||||
def smart_tokenizer_and_embedding_resize(
|
||||
special_tokens_dict: dict,
|
||||
tokenizer: transformers.PreTrainedTokenizer,
|
||||
model: transformers.PreTrainedModel,
|
||||
):
|
||||
"""Resize tokenizer and embedding.
|
||||
|
||||
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
||||
"""
|
||||
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
if num_new_tokens > 0:
|
||||
input_embeddings_data = model.get_input_embeddings().weight.data
|
||||
output_embeddings_data = model.get_output_embeddings().weight.data
|
||||
|
||||
input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
|
||||
output_embeddings_avg = output_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
|
||||
|
||||
input_embeddings_data[-num_new_tokens:] = input_embeddings_avg
|
||||
output_embeddings_data[-num_new_tokens:] = output_embeddings_avg
|
||||
|
||||
|
||||
def get_tokenizer(model, cache_dir, model_args: ModelArguments):
|
||||
print(f'Tokenizer: {model_args.tokenizer if model_args.tokenizer is not None else model_args.model_name_or_path}')
|
||||
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer if model_args.tokenizer is not None else model_args.model_name_or_path,
|
||||
cache_dir=cache_dir,
|
||||
padding_side="right",
|
||||
use_fast=False,
|
||||
eos_token="[EOS]",
|
||||
tokenizer_type='llama' if 'llama' in model_args.model_name_or_path else None,
|
||||
trust_remote_code=model_args.trust_remote_code
|
||||
)
|
||||
if tokenizer._pad_token is None and not model_args.noresize:
|
||||
smart_tokenizer_and_embedding_resize(
|
||||
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
)
|
||||
if 'llama' in model_args.model_name_or_path or isinstance(tokenizer, transformers.LlamaTokenizer):
|
||||
# LLaMA tokenizer may not have correct special tokens set.
|
||||
# Check and add them if missing to prevent them from being parsed into different tokens.
|
||||
# Note that these are present in the vocabulary.
|
||||
# Note also that `model.config.pad_token_id` is 0 which corresponds to `<unk>` token.
|
||||
print('Adding special tokens.')
|
||||
tokenizer.add_special_tokens({
|
||||
"eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id),
|
||||
"bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id),
|
||||
"unk_token": tokenizer.convert_ids_to_tokens(
|
||||
model.config.pad_token_id if model.config.pad_token_id != -1 else tokenizer.pad_token_id
|
||||
),
|
||||
})
|
||||
return tokenizer
|
338
train_dynamic.py
Normal file
338
train_dynamic.py
Normal file
@ -0,0 +1,338 @@
|
||||
import transformers
|
||||
from transformers import AutoModelForCausalLM, get_scheduler
|
||||
from peft.utils import _get_submodules
|
||||
|
||||
import torch
|
||||
from torch.utils import tensorboard
|
||||
import os
|
||||
import shutil
|
||||
import math
|
||||
from tqdm.auto import tqdm
|
||||
from random import randint
|
||||
from typing import Tuple
|
||||
|
||||
from arguments import DataArguments, ModelArguments, TrainingArguments
|
||||
from datamodules import create_data_module_s2s, create_data_module
|
||||
from convertinglinear import ConvertingLinear
|
||||
from tokenizer import get_tokenizer
|
||||
|
||||
|
||||
def find_all_linear_module_names(model):
|
||||
module_names = set()
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, torch.nn.Linear) or isinstance(module, ConvertingLinear):
|
||||
module_names.add(name)
|
||||
|
||||
if 'lm_head' in module_names: # needed for 16-bit
|
||||
module_names.remove('lm_head')
|
||||
return list(module_names)
|
||||
|
||||
|
||||
def find_all_outher_module_names(model):
|
||||
module_names = set()
|
||||
for name, module in model.named_modules():
|
||||
if not (isinstance(module, torch.nn.Linear) or isinstance(module, ConvertingLinear)):
|
||||
module_names.add(name)
|
||||
return list(module_names)
|
||||
|
||||
|
||||
def get_model(model_args: ModelArguments, cache_dir, gradient_checkpointing):
|
||||
dtype = torch.float16 if training_args.fp16 or (training_args.storage_fp16 and model_args.max_instant_params > 0) else torch.float32
|
||||
print(f'loading base model {model_args.model_name_or_path} in {dtype}...')
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=cache_dir,
|
||||
torch_dtype=dtype if model_args.max_instant_params > 0 else torch.float32,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
device_map=None,
|
||||
attn_implementation="flash_attention_2"
|
||||
)
|
||||
|
||||
# for name, module in model.named_modules():
|
||||
# if 'norm' in name:
|
||||
# module = module.to(torch.float32)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def recursive_setattr(obj, attr, value):
|
||||
attr = attr.split('.', 1)
|
||||
if len(attr) == 1:
|
||||
setattr(obj, attr[0], value)
|
||||
else:
|
||||
recursive_setattr(getattr(obj, attr[0]), attr[1], value)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def set_linear_module_frozen_simple(module, frozen: bool, dtype: torch.dtype, device: torch.device):
|
||||
new_module = torch.nn.Linear(module.in_features,
|
||||
module.out_features,
|
||||
module.bias is not None,
|
||||
module.weight.device,
|
||||
dtype)
|
||||
new_module.weight = torch.nn.Parameter(module.weight.detach().clone())
|
||||
new_module.bias = torch.nn.Parameter(module.bias.detach().clone()) if module.bias is not None else None
|
||||
new_module.weight.requires_grad = not frozen
|
||||
if new_module.bias is not None:
|
||||
new_module.bias.requires_grad = not frozen
|
||||
return new_module
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def set_linear_module_frozen(module, frozen: bool, dtype: torch.dtype, device: torch.device):
|
||||
if type(module) is torch.nn.Linear:
|
||||
if frozen:
|
||||
module.weight.requires_grad = False
|
||||
if module.bias is not None:
|
||||
module.bias.requires_grad = False
|
||||
return module.to(dtype).to(device)
|
||||
else:
|
||||
new_module = ConvertingLinear.fromLinear(module).to(dtype)
|
||||
new_module.weight.requires_grad = True
|
||||
if new_module.bias is not None:
|
||||
new_module.bias.requires_grad = True
|
||||
return new_module.to(device)
|
||||
elif type(module) is ConvertingLinear:
|
||||
if not frozen:
|
||||
module.weight.requires_grad = True
|
||||
if module.bias is not None:
|
||||
module.bias.requires_grad = True
|
||||
assert False
|
||||
return module.to(dtype).to(device)
|
||||
else:
|
||||
new_module = torch.nn.utils.skip_init(torch.nn.Linear, in_features=module.in_features,
|
||||
out_features=module.out_features,
|
||||
bias=module.bias is not None,
|
||||
device=module.weight.device,
|
||||
dtype=dtype)
|
||||
new_module.weight = torch.nn.Parameter(module.weight.to(dtype))
|
||||
new_module.bias = torch.nn.Parameter(module.bias.to(dtype)) if module.bias is not None else None
|
||||
new_module.weight.requires_grad = False
|
||||
if new_module.bias is not None:
|
||||
new_module.bias.requires_grad = False
|
||||
return new_module.to(device)
|
||||
else:
|
||||
assert False
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def freeze_random_modules(model, target_params: int, frozen_dtype: torch.dtype, frozen_device: torch.device, active_device: torch.device):
|
||||
modules = dict(model.named_modules())
|
||||
linear_names = find_all_linear_module_names(model)
|
||||
|
||||
for key in linear_names:
|
||||
if modules[key].weight.dtype != frozen_dtype or modules[key].weight.requires_grad or modules[key].weight.requires_grad:
|
||||
parent, target, target_name = _get_submodules(model, key)
|
||||
setattr(parent, target_name, set_linear_module_frozen(modules[key], True, frozen_dtype, frozen_device))
|
||||
modules = dict(model.named_modules())
|
||||
|
||||
active_paramter_count = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
if active_paramter_count > target_params:
|
||||
raise RuntimeError("Enough paramters must be available to train at least one linear layer")
|
||||
|
||||
while active_paramter_count < target_params and len(linear_names) > 0:
|
||||
i = randint(0, len(linear_names) - 1)
|
||||
parent, target, target_name = _get_submodules(model, linear_names[i])
|
||||
new_module = set_linear_module_frozen(modules[linear_names[i]], False, torch.float32, active_device)
|
||||
setattr(parent, target_name, new_module)
|
||||
active_paramter_count += modules[linear_names[i]].weight.numel()
|
||||
if modules[linear_names[i]].bias is not None:
|
||||
active_paramter_count += modules[linear_names[i]].bias.numel()
|
||||
linear_names.pop(i)
|
||||
modules = dict()
|
||||
|
||||
assert active_paramter_count == sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
|
||||
return active_paramter_count
|
||||
|
||||
|
||||
def save_model(model, global_step: int, output_dir: str, max_checkpoints: int = 0):
|
||||
output_chkpt_dir = f"step_{global_step}" if global_step >= 0 else ""
|
||||
output_dir = os.path.join(output_dir, output_chkpt_dir)
|
||||
model.save_pretrained(output_dir)
|
||||
|
||||
if max_checkpoints > 0:
|
||||
files = [f for f in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, f)) and f.starts_with("step_")]
|
||||
|
||||
def extract_step(filename):
|
||||
tokens = filename.split('_')
|
||||
return int(tokens[1])
|
||||
|
||||
if len(files) > max_checkpoints:
|
||||
min_step = min(map(extract_step, extract_step))
|
||||
delete_checkpoit_dir = os.path.join(output_dir, f"step_{min_step}")
|
||||
print(f"there are more than {max_checkpoints} checkpints saved, deleting {delete_checkpoit_dir}")
|
||||
shutil.rmtree(delete_checkpoit_dir)
|
||||
|
||||
|
||||
def get_optimizer(model, dynamic_module_names: list, static_module_names: list, lr: float, static_lr: float,
|
||||
weight_decay: float, eps: float, adam8bit: bool):
|
||||
|
||||
parameters = list()
|
||||
modules = dict(model.named_modules())
|
||||
for key in dynamic_module_names:
|
||||
parameters.extend({'params': p} for p in modules[key].parameters() if p.requires_grad)
|
||||
for key in static_module_names:
|
||||
parameters.extend({'params': p, 'lr': static_lr} for p in modules[key].parameters() if p.requires_grad)
|
||||
|
||||
if not adam8bit:
|
||||
optimizer = torch.optim.AdamW(parameters, weight_decay=weight_decay, lr=lr, eps=training_args.adam_epsilon)
|
||||
else:
|
||||
try:
|
||||
import bitsandbytes as bnb
|
||||
except ImportError:
|
||||
raise ImportError("To use 8-bit Adam, bitsandbytes must be available")
|
||||
optimizer = bnb.optim.AdamW8bit(parameters, weight_decay=weight_decay, lr=lr, eps=eps)
|
||||
return optimizer
|
||||
|
||||
|
||||
def compute_dynamic_parameter_ratio(model):
|
||||
modules = dict(model.named_modules())
|
||||
active_linear_parameters = 0
|
||||
total_linear_parameters = 0
|
||||
for key in find_all_linear_module_names(model):
|
||||
active_linear_parameters += sum(p.numel() for p in modules[key].parameters() if p.requires_grad)
|
||||
total_linear_parameters += sum(p.numel() for p in modules[key].parameters())
|
||||
return math.ceil(total_linear_parameters / active_linear_parameters)
|
||||
|
||||
|
||||
def prepare(model_args: ModelArguments, data_args: DataArguments, training_args: TrainingArguments, primary_device: torch.device, secondary_device: torch.device) -> tuple:
|
||||
model = get_model(model_args, training_args.cache_dir, training_args.gradient_checkpointing).to(primary_device)
|
||||
tokenizer = get_tokenizer(model, training_args.cache_dir, model_args)
|
||||
|
||||
if data_args.dataset.endswith("json"):
|
||||
print("Loading dataset in s2s mode")
|
||||
data_module = create_data_module_s2s(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
|
||||
else:
|
||||
print("Loading dataset in txt mode")
|
||||
data_module = create_data_module(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
|
||||
dataset = {k: v for k, v in data_module.items() if k != 'predict_dataset'}
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
dataset['train_dataset'],
|
||||
shuffle=True,
|
||||
collate_fn=dataset['data_collator'],
|
||||
batch_size=training_args.per_device_train_batch_size
|
||||
) if dataset['train_dataset'] is not None else None
|
||||
eval_dataloader = torch.utils.data.DataLoader(
|
||||
dataset['eval_dataset'],
|
||||
shuffle=True,
|
||||
collate_fn=dataset['data_collator'],
|
||||
batch_size=training_args.per_device_train_batch_size
|
||||
) if dataset['eval_dataset'] is not None else None
|
||||
|
||||
if model_args.max_instant_params != 0:
|
||||
print(f"Target params {model_args.max_instant_params}m")
|
||||
freeze_random_modules(model, model_args.max_instant_params * 1e6,
|
||||
torch.float16 if training_args.storage_fp16 else torch.float32,
|
||||
frozen_device=primary_device, active_device=secondary_device)
|
||||
|
||||
paramter_count = sum(p.numel() for p in model.parameters())
|
||||
active_paramter_count = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
print(f"Training model with {paramter_count/1e6}m parameters and {active_paramter_count/1e6}m instantanous active paramters")
|
||||
|
||||
dynamic_param_ratio = compute_dynamic_parameter_ratio(model)
|
||||
print(f"dyanamic parameter ratio: 1/{dynamic_param_ratio}")
|
||||
|
||||
steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps)
|
||||
total_steps = steps_per_epoch * training_args.epochs
|
||||
|
||||
optimizer = get_optimizer(model, find_all_linear_module_names(model),
|
||||
find_all_outher_module_names(model) if training_args.train_non_linear_layers else list(),
|
||||
training_args.learning_rate,
|
||||
training_args.learning_rate / dynamic_param_ratio,
|
||||
training_args.weight_decay,
|
||||
training_args.adam_epsilon,
|
||||
training_args.adam8bit)
|
||||
lr_scheduler = get_scheduler(
|
||||
name=training_args.lr_scheduler_type,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=training_args.warmup_steps,
|
||||
num_training_steps=total_steps
|
||||
)
|
||||
return model, optimizer, lr_scheduler, train_dataloader
|
||||
|
||||
|
||||
def train(model_args: ModelArguments, data_args: DataArguments, training_args: TrainingArguments):
|
||||
primary_device = torch.device(training_args.primary_device)
|
||||
secondary_device = torch.device(training_args.secondary_device)
|
||||
log_writer = tensorboard.SummaryWriter()
|
||||
|
||||
model, optimizer, lr_scheduler, train_dataloader = prepare(model_args, data_args, training_args, primary_device, secondary_device)
|
||||
|
||||
steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps)
|
||||
total_steps = steps_per_epoch * training_args.epochs
|
||||
dynamic_param_ratio = compute_dynamic_parameter_ratio(model)
|
||||
|
||||
if training_args.do_train:
|
||||
progress_bar = tqdm(range(total_steps))
|
||||
global_step = 0
|
||||
model.train()
|
||||
for epoch in range(0, training_args.epochs):
|
||||
print("*** Train ***")
|
||||
print(f'Vram used for model before training starts: {torch.cuda.memory_allocated()/(1024.0*1024.0)}')
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
for key in batch:
|
||||
batch[key] = batch[key].to("cuda:0")
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss / training_args.gradient_accumulation_steps
|
||||
log_writer.add_scalar("Loss/train", loss, global_step)
|
||||
loss.backward()
|
||||
|
||||
if (step + 1) % training_args.gradient_accumulation_steps == 0 or step + 1 == len(train_dataloader):
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
|
||||
model.zero_grad()
|
||||
|
||||
if global_step % 10 == 0:
|
||||
print(loss)
|
||||
|
||||
if global_step % 10 == 0 and model_args.max_instant_params != 0:
|
||||
param_count = freeze_random_modules(model, model_args.max_instant_params * 1e6,
|
||||
torch.float16 if training_args.storage_fp16 else torch.float32,
|
||||
frozen_device=primary_device,
|
||||
active_device=secondary_device)
|
||||
log_writer.add_scalar("Parameters/train", param_count, global_step)
|
||||
optimizer = get_optimizer(model, find_all_linear_module_names(model),
|
||||
find_all_outher_module_names(model) if training_args.train_non_linear_layers else list(),
|
||||
training_args.learning_rate,
|
||||
training_args.learning_rate / dynamic_param_ratio,
|
||||
training_args.weight_decay,
|
||||
training_args.adam_epsilon,
|
||||
training_args.adam8bit)
|
||||
lr_scheduler.optimizer = optimizer
|
||||
|
||||
global_step += 1
|
||||
progress_bar.update()
|
||||
|
||||
if global_step % training_args.save_steps == 0:
|
||||
save_model(model, global_step, training_args.output_dir, training_args.max_checkpoints)
|
||||
if training_args.flush_allocator:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
print("*** Evaluate ***")
|
||||
|
||||
save_model(model, global_step, training_args.output_dir)
|
||||
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
hfparser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
|
||||
model_args, data_args, training_args, extra_args = hfparser.parse_args_into_dataclasses(return_remaining_strings=True)
|
||||
|
||||
print("Model Arguments:")
|
||||
print(model_args)
|
||||
print("\nData Arguments:")
|
||||
print(data_args)
|
||||
print("\nTraining Arguments:")
|
||||
print(training_args)
|
||||
|
||||
transformers.utils.logging.enable_default_handler()
|
||||
transformers.utils.logging.enable_explicit_format()
|
||||
|
||||
train(model_args, data_args, training_args)
|
Reference in New Issue
Block a user