add support for huggingfacehub datasets and for specificying a prompt for eval
This commit is contained in:
parent
8abea9ef89
commit
a74ef976e4
11
arguments.py
11
arguments.py
@ -19,6 +19,10 @@ class DataArguments:
|
||||
default=256,
|
||||
metadata={"help": "Maximum target sequence length. Sequences will be right padded (and possibly truncated)."},
|
||||
)
|
||||
data_from_hub: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "If this is set the dataset is assumed to be a name of a hf-hub dataset"}
|
||||
)
|
||||
dataset: str = field(
|
||||
default=None,
|
||||
metadata={"help": "A json file (s2s) or text file with the dataset to train on"}
|
||||
@ -60,10 +64,6 @@ class TrainingArguments():
|
||||
default=False,
|
||||
metadata={"help": "Use 8-bit adam."}
|
||||
)
|
||||
report_to: str = field(
|
||||
default='none',
|
||||
metadata={"help": "To use wandb or something else for reporting."}
|
||||
)
|
||||
resume: bool = field(default=False, metadata={"help": 'Resume from previous checkpoint'})
|
||||
ddp_find_unused_parameters: bool = field(default=True, metadata={"help": 'set if trainer should try to find unused parameters'})
|
||||
output_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'})
|
||||
@ -85,7 +85,6 @@ class TrainingArguments():
|
||||
logging_steps: int = field(default=10, metadata={"help": 'The frequency of update steps after which to log the loss'})
|
||||
group_by_length: bool = field(default=False,
|
||||
metadata={"help": 'Group sequences into batches with same length. Saves memory and speeds up training considerably.'})
|
||||
storage_fp16: bool = field(default=False, metadata={"help": 'Store untrained layers in 16bit'})
|
||||
save_steps: int = field(default=250, metadata={"help": 'How often to save a model'})
|
||||
max_checkpoints: int = field(default=0, metadata={"help": 'the maximum amount of checkpoints to save'})
|
||||
save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'})
|
||||
@ -94,3 +93,5 @@ class TrainingArguments():
|
||||
max_instant_params: int = field(default=0, metadata={"help": "Maximum amount of paramters to optimize per step in millions"})
|
||||
churn_percent: int = field(default=100, metadata={"help": "The percentage of active parameters to replace when changeing active parameters"})
|
||||
eval_steps: int = field(default=-1, metadata={"help": "Number of optimization steps after wich to compute the evaluation loss"})
|
||||
eval_prompt: str = field(default=None, metadata={"help": "A prompt to used during eval to check if the model is learning"})
|
||||
reshufle_steps: int = field(default=50, metadata={"help": "Number of steps to take before changing the active parameters"})
|
||||
|
@ -27,7 +27,44 @@ def group_texts(examples, block_size: int):
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataCollatorForCausalLM(object):
|
||||
class DataCollatorForCausalLMText(object):
|
||||
tokenizer: transformers.PreTrainedTokenizer
|
||||
max_len: int
|
||||
|
||||
def __call__(self, instances: typing.Sequence[typing.Dict]) -> typing.Dict[str, torch.Tensor]:
|
||||
# Extract elements
|
||||
examples = [f"{self.tokenizer.bos_token}{example['text']}{self.tokenizer.eos_token}" for example in instances]
|
||||
# Tokenize
|
||||
tokenized_examples = self.tokenizer(
|
||||
examples,
|
||||
max_length=self.max_len,
|
||||
truncation=True,
|
||||
add_special_tokens=False,
|
||||
)
|
||||
# Build the input and labels for causal LM
|
||||
input_ids = []
|
||||
for tokenized_example in tokenized_examples['input_ids']:
|
||||
input_ids.append(torch.tensor(tokenized_example))
|
||||
# Apply padding
|
||||
padding_value = None
|
||||
if self.tokenizer.pad_token_id is not None:
|
||||
padding_value = self.tokenizer.pad_token_id
|
||||
elif self.tokenizer.eos_token_id is not None:
|
||||
padding_value = self.tokenizer.eos_token_id
|
||||
else:
|
||||
raise RuntimeError("Model dose not have a pad or eos token")
|
||||
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=padding_value)
|
||||
|
||||
data_dict = {
|
||||
'input_ids': input_ids,
|
||||
'attention_mask': input_ids.ne(padding_value),
|
||||
'labels': input_ids
|
||||
}
|
||||
return data_dict
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataCollatorForCausalLMs2s(object):
|
||||
tokenizer: transformers.PreTrainedTokenizer
|
||||
source_max_len: int
|
||||
target_max_len: int
|
||||
@ -102,7 +139,7 @@ def create_data_module_s2s(tokenizer: transformers.PreTrainedTokenizer, data_arg
|
||||
test_size=data_args.eval_dataset_size, shuffle=True, seed=42
|
||||
)
|
||||
eval_dataset = dataset['test']
|
||||
eval_dataset = eval_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
|
||||
eval_dataset = eval_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
|
||||
|
||||
if 'train' in dataset:
|
||||
train_dataset = dataset['train']
|
||||
@ -111,7 +148,7 @@ def create_data_module_s2s(tokenizer: transformers.PreTrainedTokenizer, data_arg
|
||||
|
||||
train_dataset = train_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
|
||||
|
||||
data_collator = DataCollatorForCausalLM(
|
||||
data_collator = DataCollatorForCausalLMs2s(
|
||||
tokenizer=tokenizer,
|
||||
source_max_len=data_args.source_max_len,
|
||||
target_max_len=data_args.target_max_len,
|
||||
@ -127,6 +164,40 @@ def create_data_module_s2s(tokenizer: transformers.PreTrainedTokenizer, data_arg
|
||||
)
|
||||
|
||||
|
||||
def create_data_module_hub(tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments, do_train, do_eval, do_predict) -> typing.Dict:
|
||||
try:
|
||||
dataset = datasets.load_dataset(data_args.dataset)
|
||||
except FileNotFoundError as ex:
|
||||
raise ValueError(f"Error loading dataset from {data_args.dataset}, {ex}")
|
||||
|
||||
if do_eval or do_predict:
|
||||
if 'eval' in dataset:
|
||||
eval_dataset = dataset['eval']
|
||||
else:
|
||||
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
|
||||
dataset = dataset.train_test_split(
|
||||
test_size=data_args.eval_dataset_size, shuffle=True, seed=42
|
||||
)
|
||||
eval_dataset = dataset['test']
|
||||
|
||||
if 'train' in dataset:
|
||||
train_dataset = dataset['train']
|
||||
else:
|
||||
train_dataset = dataset
|
||||
|
||||
data_collator = DataCollatorForCausalLMText(
|
||||
tokenizer=tokenizer,
|
||||
max_len=data_args.source_max_len,
|
||||
)
|
||||
|
||||
return dict(
|
||||
train_dataset=train_dataset if do_train else None,
|
||||
eval_dataset=eval_dataset if do_eval else None,
|
||||
predict_dataset=eval_dataset if do_predict else None,
|
||||
data_collator=data_collator
|
||||
)
|
||||
|
||||
|
||||
def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments, do_train: bool, do_eval: bool, do_predict: bool) -> typing.Dict:
|
||||
try:
|
||||
dataset = datasets.load_dataset('text', data_files={'train': [data_args.dataset]})
|
||||
@ -147,7 +218,8 @@ def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: D
|
||||
eval_dataset = dataset['eval']
|
||||
else:
|
||||
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
|
||||
dataset = dataset.train_test_split(
|
||||
breakpoint()
|
||||
dataset = dataset['train'].train_test_split(
|
||||
test_size=data_args.eval_dataset_size, shuffle=True, seed=42
|
||||
)
|
||||
eval_dataset = dataset['test']
|
||||
|
@ -48,14 +48,22 @@ class LinearGroup:
|
||||
for module in self.modules:
|
||||
module.decompress()
|
||||
|
||||
def checkDistance(self) -> tuple[float, float]:
|
||||
distance_accum = 0.0
|
||||
error_accum = 0.0
|
||||
def getDistanceAndError(self) -> tuple[float, float]:
|
||||
distance_accum = torch.Tensor()
|
||||
error_accum = torch.Tensor()
|
||||
for module in self.modules:
|
||||
distance, error = module.checkDistance()
|
||||
distance_accum += distance**2
|
||||
error_accum += error**2
|
||||
return (math.sqrt(distance_accum) / math.sqrt(len(self.modules)), math.sqrt(error_accum) / math.sqrt(len(self.modules)))
|
||||
distance, error = module.getDistanceAndError()
|
||||
distance = distance.to("cpu")
|
||||
error = error.to("cpu")
|
||||
distance_accum = torch.cat((distance_accum, distance.reshape((distance.numel()))))
|
||||
error_accum = torch.cat((error_accum, error.reshape((error.numel()))))
|
||||
return (distance_accum, error_accum)
|
||||
|
||||
def check(self) -> bool:
|
||||
for module in self.modules:
|
||||
if not module.check():
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
class DyntrainModel:
|
||||
@ -160,15 +168,18 @@ class DyntrainModel:
|
||||
total_params = self.dynamicParameters() + self.staticParameters()
|
||||
return sum(p.numel() for p in total_params if p.requires_grad)
|
||||
|
||||
def reshuffleActive(self) -> None:
|
||||
def getDistanceAndErrorSample(self) -> (torch.Tensor, torch.Tensor):
|
||||
index = randint(0, len(self.active_linear_groups) - 1)
|
||||
return self.active_linear_groups[index].getDistanceAndError()
|
||||
|
||||
def reshuffleActive(self):
|
||||
active_count = len(self.active_linear_groups)
|
||||
index = 0
|
||||
while len(self.active_linear_groups) > active_count * (1 - self.reshuffle_fraction):
|
||||
distance, error = self.active_linear_groups[index].checkDistance()
|
||||
print(f"linear group has moved {distance} with an error of {error}")
|
||||
group = self.active_linear_groups.pop(index)
|
||||
group.setFrozen(True)
|
||||
self.frozen_linear_groups.append(group)
|
||||
assert group.check()
|
||||
|
||||
params = self.activeParameterCount()
|
||||
|
||||
@ -180,6 +191,7 @@ class DyntrainModel:
|
||||
group.setFrozen(False)
|
||||
params += group.paramCount()
|
||||
self.active_linear_groups.append(group)
|
||||
assert group.check()
|
||||
print(math.ceil(params / 1e6))
|
||||
|
||||
active_params = self.activeParameterCount()
|
||||
@ -248,4 +260,8 @@ class DyntrainModel:
|
||||
group_index += 1
|
||||
|
||||
for group in tqdm(linear_groups, desc="Perpareing layers"):
|
||||
group.compress()
|
||||
if group.isFrozen():
|
||||
group.compress()
|
||||
else:
|
||||
group.decompress()
|
||||
assert group.check()
|
||||
|
61
modules.py
61
modules.py
@ -35,7 +35,6 @@ class Linear(torch.nn.Linear):
|
||||
self.compress()
|
||||
else:
|
||||
self.decompress()
|
||||
self.weightStart = torch.Tensor(self.weight).clone().detach()
|
||||
|
||||
def isFrozen(self) -> bool:
|
||||
return not self.weight.requires_grad
|
||||
@ -60,9 +59,15 @@ class Linear(torch.nn.Linear):
|
||||
|
||||
@wraps(torch.nn.Module.to)
|
||||
def to(self, *args, **kwargs):
|
||||
breakpoint()
|
||||
return self
|
||||
|
||||
def check(self) -> bool:
|
||||
if self.isFrozen() and self.weight.dtype != torch.float16:
|
||||
return False
|
||||
elif not self.isFrozen() and self.weight.dtype != torch.float32:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
class DynamicConvertingLinear(Linear):
|
||||
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None,
|
||||
@ -116,6 +121,7 @@ class DynamicQantizedLinear(Linear):
|
||||
self.bias_state = None
|
||||
self.block_size = 128
|
||||
self.quant_type = 'nf4'
|
||||
self.weight_start = self.weight.clone().detach()
|
||||
|
||||
@classmethod
|
||||
def fromLinear(cls, in_module: torch.nn.Linear, active_device: torch.device, cold_device: torch.device,
|
||||
@ -125,6 +131,7 @@ class DynamicQantizedLinear(Linear):
|
||||
compute_dtype=compute_dtype, output_device=output_device)
|
||||
new_module.weight = torch.nn.Parameter(in_module.weight.to(torch.float32).to(cold_device))
|
||||
new_module.bias = torch.nn.Parameter(in_module.bias.to(torch.float32).to(cold_device)) if new_module.bias is not None else None
|
||||
new_module.weight_start = new_module.weight.clone().detach()
|
||||
return new_module
|
||||
|
||||
def compress(self) -> None:
|
||||
@ -134,26 +141,27 @@ class DynamicQantizedLinear(Linear):
|
||||
bias = self.bias.contiguous().to(torch.float16).cuda(self.active_device)
|
||||
self.bias_quantized, self.bias_state = bnb.functional.quantize_blockwise(bias, blocksize=self.block_size)
|
||||
|
||||
weight = torch.nn.Parameter(self.weight.to(self.cold_device))
|
||||
bias = torch.nn.Parameter(self.bias.to(self.cold_device)) if self.bias is not None else None
|
||||
frozen = self.isFrozen()
|
||||
self.weight = torch.nn.Parameter(self.weight.to(self.cold_device))
|
||||
self.bias = torch.nn.Parameter(self.bias.to(self.cold_device)) if self.bias is not None else None
|
||||
self.setFrozen(frozen, False)
|
||||
|
||||
def decompress(self) -> None:
|
||||
if self.weight_quantized is None:
|
||||
raise RuntimeError("decompress() called in quantized stated before quantized weights are avialable")
|
||||
dtype = self.weight.dtype
|
||||
self.weight = torch.nn.Parameter(bnb.functional.dequantize_blockwise(self.weight_quantized, self.weight_state).to(dtype).to(self.active_device))
|
||||
self.weight_quantized = None
|
||||
self.weight_state = None
|
||||
self.bias_quantized = None
|
||||
self.bias_state = None
|
||||
self.weight_start = self.weight.clone().detach().to(self.cold_device)
|
||||
self.weight = torch.nn.Parameter(self.weight.to(self.active_device))
|
||||
if self.bias_quantized:
|
||||
self.bias = torch.nn.Parameter(bnb.functional.dequantize_blockwise(self.bias_quantized, self.bias_state).to(dtype).to(self.active_device))
|
||||
self.bias = torch.nn.Parameter(self.bias.to(self.active_device))
|
||||
|
||||
def checkDistance(self) -> tuple[float, float]:
|
||||
if self.weight_quantized is None:
|
||||
raise RuntimeError("checkDistance() called without quantized weights avialable")
|
||||
def getDistanceAndError(self) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
original_weight = self.weight.contiguous().to(self.active_device).to(torch.float16)
|
||||
quantized_original_weight, quantized_original_state = bnb.functional.quantize_blockwise(original_weight, blocksize=self.block_size)
|
||||
dequantized_original_weight = bnb.functional.dequantize_blockwise(self.quantized_original_weight, self.quantized_original_state).to(original_weight.dtype)
|
||||
dequantized_weight = bnb.functional.dequantize_blockwise(self.weight_quantized, self.weight_state).to(original_weight.dtype)
|
||||
distance = (torch.linalg.vector_norm(dequantized_original_weight - dequantized_weight).to(torch.float32) / dequantized_original_weight.numel()).item()
|
||||
error = (torch.linalg.vector_norm(dequantized_original_weight - original_weight).to(torch.float32) / dequantized_original_weight.numel()).item()
|
||||
dequantized_original_weight = bnb.functional.dequantize_blockwise(quantized_original_weight, quantized_original_state).to(original_weight.dtype)
|
||||
distance = (self.weight_start - self.weight.to(self.cold_device)).to(torch.float32)
|
||||
error = (dequantized_original_weight - original_weight).to(torch.float32)
|
||||
return (distance, error)
|
||||
|
||||
def setOutputDevice(self, output_device: torch.device):
|
||||
@ -200,3 +208,24 @@ class DynamicQantizedLinear(Linear):
|
||||
if not frozen:
|
||||
super().inplaceTo(device=device)
|
||||
self.setFrozen(frozen, False)
|
||||
|
||||
def check(self) -> bool:
|
||||
if self.isFrozen():
|
||||
if torch.device(self.weight.device) != torch.device(self.cold_device):
|
||||
breakpoint()
|
||||
print("Frozen but not cold")
|
||||
return False
|
||||
if self.weight_quantized is None:
|
||||
breakpoint()
|
||||
print("Frozen but not quanted")
|
||||
return False
|
||||
else:
|
||||
if torch.device(self.weight.device) != torch.device(self.active_device):
|
||||
breakpoint()
|
||||
print("Active but not warm")
|
||||
return False
|
||||
if self.weight_quantized is not None:
|
||||
breakpoint()
|
||||
print("Active but still quantized")
|
||||
return False
|
||||
return True
|
||||
|
@ -7,9 +7,10 @@ import os
|
||||
import shutil
|
||||
import math
|
||||
from tqdm.auto import tqdm
|
||||
import gc
|
||||
|
||||
from arguments import DataArguments, ModelArguments, TrainingArguments
|
||||
from datamodules import create_data_module_s2s, create_data_module
|
||||
from datamodules import create_data_module_s2s, create_data_module, create_data_module_hub
|
||||
from tokenizer import get_tokenizer
|
||||
|
||||
from dyntrainmodel import DyntrainModel
|
||||
@ -56,7 +57,9 @@ def get_optimizer(dyamic_parameters: list[torch.nn.parameter], static_parameters
|
||||
return optimizer
|
||||
|
||||
|
||||
def evaluate(model: DyntrainModel, dataloader: torch.utils.data.DataLoader) -> float:
|
||||
def evaluate(model: DyntrainModel, tokenizer,
|
||||
dataloader: torch.utils.data.DataLoader, globalstep: int,
|
||||
log_writer: tensorboard.SummaryWriter, eval_prompt: str = None):
|
||||
print("*** Eval ***")
|
||||
loss = torch.zeros((1), device="cuda:0")
|
||||
model.model.eval()
|
||||
@ -66,8 +69,17 @@ def evaluate(model: DyntrainModel, dataloader: torch.utils.data.DataLoader) -> f
|
||||
outputs = model.model(**batch)
|
||||
loss += outputs.loss
|
||||
loss = loss / len(dataloader)
|
||||
log_writer.add_scalar("Loss/Eval", loss, globalstep)
|
||||
print(f"Eval Loss {loss.item()}")
|
||||
|
||||
if eval_prompt is not None:
|
||||
input_ids = tokenizer(eval_prompt, return_tensors="pt").input_ids.to(model.devices[0])
|
||||
attention_mask = torch.ones(input_ids.shape, device=model.devices[0], requires_grad=False)
|
||||
outputs = model.generate(input_ids, attention_mask=attention_mask, do_sample=True, temperature=1, max_new_tokens=100)
|
||||
response_decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||
print(f"Eval generation: response_decoded")
|
||||
log_writer.add_text("Text/Eval", response_decoded, globalstep)
|
||||
|
||||
|
||||
def train(model_args: ModelArguments, data_args: DataArguments, training_args: TrainingArguments):
|
||||
log_writer = tensorboard.SummaryWriter()
|
||||
@ -90,6 +102,8 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
|
||||
if data_args.dataset.endswith("json"):
|
||||
print("Loading dataset in s2s mode")
|
||||
data_module = create_data_module_s2s(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
|
||||
elif data_args.data_from_hub:
|
||||
data_module = create_data_module_hub(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
|
||||
else:
|
||||
print("Loading dataset in txt mode")
|
||||
data_module = create_data_module(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
|
||||
@ -137,12 +151,14 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
for key in batch:
|
||||
batch[key] = batch[key].to("cuda:0")
|
||||
|
||||
outputs = model.model(**batch)
|
||||
loss = outputs.loss / training_args.gradient_accumulation_steps
|
||||
log_writer.add_scalar("Loss/train", loss, global_step)
|
||||
loss.backward()
|
||||
|
||||
if (step + 1) % training_args.gradient_accumulation_steps == 0 or step + 1 == len(train_dataloader):
|
||||
if global_step % training_args.logging_steps == 0:
|
||||
log_writer.add_scalar("Loss/train", loss, global_step)
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
|
||||
@ -151,9 +167,14 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
|
||||
if global_step % 5 == 0:
|
||||
print(f"Train Loss {loss.item()}")
|
||||
|
||||
if global_step % 50 == 0 and training_args.max_instant_params != 0:
|
||||
if global_step % training_args.reshufle_steps == 0 and training_args.max_instant_params != 0:
|
||||
print("Reshuffleing")
|
||||
lr_scheduler.optimizer = None
|
||||
del optimizer
|
||||
# distance, error = model.getDistanceAndErrorSample()
|
||||
# log_writer.add_histogram("Distances/Train", distance, max_bins=50)
|
||||
# log_writer.add_histogram("Errors/Train", error, max_bins=50)
|
||||
|
||||
model.reshuffleActive()
|
||||
model.balanceActive()
|
||||
log_writer.add_scalar("Parameters/train", model.activeParameterCount(), global_step)
|
||||
@ -173,15 +194,16 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
|
||||
if global_step % training_args.save_steps == 0:
|
||||
save_model(model.model, global_step, training_args.output_dir, training_args.max_checkpoints)
|
||||
if training_args.eval_steps > 0 and global_step % training_args.save_steps == 0:
|
||||
evaluate(model, eval_dataloader)
|
||||
evaluate(model, eval_dataloader, global_step, log_writer, training_args.eval_prompt)
|
||||
if training_args.flush_allocator:
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
if training_args.do_eval and training_args.eval_steps == -1:
|
||||
evaluate(model, eval_dataloader)
|
||||
evaluate(model, eval_dataloader, global_step, log_writer, training_args.eval_prompt)
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
evaluate(model, eval_dataloader)
|
||||
evaluate(model, eval_dataloader, global_step, log_writer, training_args.eval_prompt)
|
||||
|
||||
save_model(model.model, global_step, training_args.output_dir)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user