add support for huggingfacehub datasets and for specificying a prompt for eval

This commit is contained in:
2024-05-07 00:23:12 +02:00
parent 8abea9ef89
commit a74ef976e4
5 changed files with 183 additions and 43 deletions

View File

@ -19,6 +19,10 @@ class DataArguments:
default=256,
metadata={"help": "Maximum target sequence length. Sequences will be right padded (and possibly truncated)."},
)
data_from_hub: Optional[bool] = field(
default=False,
metadata={"help": "If this is set the dataset is assumed to be a name of a hf-hub dataset"}
)
dataset: str = field(
default=None,
metadata={"help": "A json file (s2s) or text file with the dataset to train on"}
@ -60,10 +64,6 @@ class TrainingArguments():
default=False,
metadata={"help": "Use 8-bit adam."}
)
report_to: str = field(
default='none',
metadata={"help": "To use wandb or something else for reporting."}
)
resume: bool = field(default=False, metadata={"help": 'Resume from previous checkpoint'})
ddp_find_unused_parameters: bool = field(default=True, metadata={"help": 'set if trainer should try to find unused parameters'})
output_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'})
@ -85,7 +85,6 @@ class TrainingArguments():
logging_steps: int = field(default=10, metadata={"help": 'The frequency of update steps after which to log the loss'})
group_by_length: bool = field(default=False,
metadata={"help": 'Group sequences into batches with same length. Saves memory and speeds up training considerably.'})
storage_fp16: bool = field(default=False, metadata={"help": 'Store untrained layers in 16bit'})
save_steps: int = field(default=250, metadata={"help": 'How often to save a model'})
max_checkpoints: int = field(default=0, metadata={"help": 'the maximum amount of checkpoints to save'})
save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'})
@ -94,3 +93,5 @@ class TrainingArguments():
max_instant_params: int = field(default=0, metadata={"help": "Maximum amount of paramters to optimize per step in millions"})
churn_percent: int = field(default=100, metadata={"help": "The percentage of active parameters to replace when changeing active parameters"})
eval_steps: int = field(default=-1, metadata={"help": "Number of optimization steps after wich to compute the evaluation loss"})
eval_prompt: str = field(default=None, metadata={"help": "A prompt to used during eval to check if the model is learning"})
reshufle_steps: int = field(default=50, metadata={"help": "Number of steps to take before changing the active parameters"})