Inactive parameter quanitzation support

This commit is contained in:
uvos 2024-04-07 19:15:42 +02:00
parent 3fa1fc254f
commit c33964371c
4 changed files with 161 additions and 78 deletions

View File

@ -45,6 +45,10 @@ class ModelArguments:
default=False,
metadata={"help": "Never resize tokenizer embeddings"}
)
quantize: Optional[bool] = field (
default=False,
metadata={"help": "Quantize parameters not currently be actively trained"}
)
@dataclass
@ -85,9 +89,8 @@ class TrainingArguments():
save_steps: int = field(default=250, metadata={"help": 'How often to save a model'})
max_checkpoints: int = field(default=0, metadata={"help": 'the maximum amount of checkpoints to save'})
save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'})
primary_device: str = field(default="cuda:0", metadata={"help": 'The primary device to use'})
secondary_device: str = field(default="cuda:0", metadata={"help": 'The secondary device to use'})
train_non_linear_layers: str = field(default=False, metadata={"help": 'train non linear layers'})
train_non_linear_layers: Optional[bool] = field(default=False, metadata={"help": 'train non linear layers'})
flush_allocator: bool = field(default=False, metadata={"help": 'flush torches allocator on eatch iteration'})
max_instant_params: int = field(default=0, metadata={"help": "Maximum amount of paramters to optimize per step in millions"})
churn_percent: int = field(default=0, metadata={"help": "The percentage of active parameters to replace when changeing active parameters"})
churn_percent: int = field(default=100, metadata={"help": "The percentage of active parameters to replace when changeing active parameters"})
eval_steps: int = field(default=-1, metadata={"help": "Number of optimization steps after wich to compute the evaluation loss"})

View File

@ -1,9 +1,10 @@
from transformers import AutoModelForCausalLM
import torch
from utils import replace_module
from modules import DynamicConvertingLinear, Linear
from modules import DynamicConvertingLinear, Linear, DynamicQantizedLinear
from random import randint
import math
from tqdm import tqdm
class LinearGroup:
@ -20,9 +21,9 @@ class LinearGroup:
module.inplaceTo(dtype, device)
self.modules[-1].setOutputDevice(output_device)
def setFrozen(self, frozen: bool) -> None:
def setFrozen(self, frozen: bool, convert: bool = True) -> None:
for module in self.modules:
module.setFrozen(frozen)
module.setFrozen(frozen, convert)
def isFrozen(self) -> bool:
return self.modules[0].isFrozen()
@ -39,9 +40,26 @@ class LinearGroup:
def getDevice(self) -> torch.device:
return self.modules[0].weight.device
def compress(self) -> None:
for module in self.modules:
module.compress()
def decompress(self) -> None:
for module in self.modules:
module.decompress()
def checkDistance(self) -> tuple[float, float]:
distance_accum = 0.0
error_accum = 0.0
for module in self.modules:
distance, error = module.checkDistance()
distance_accum += distance**2
error_accum += error**2
return (math.sqrt(distance_accum) / math.sqrt(len(self.modules)), math.sqrt(error_accum) / math.sqrt(len(self.modules)))
class DyntrainModel:
def __init__(self, model_name_or_path: str, cache_dir: str,
def __init__(self, model_name_or_path: str, cache_dir: str, quantize: bool,
target_active_params: int, reshuffle_fraction: float, gradient_checkpointing: bool, trust_remote_code: bool = False):
self.model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
@ -55,28 +73,32 @@ class DyntrainModel:
if reshuffle_fraction < 0.10 or reshuffle_fraction > 1:
raise RuntimeError("reshuffle_percent must be between 0.1 and 1.0")
self.devices = list()
self.inital_reshufle = True
if gradient_checkpointing:
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
modules = dict(self.model.named_modules())
self.frozen_linear_groups = list()
self.active_linear_groups = list()
linear_group_names = DyntrainModel._get_linear_group_names(self.model)
linear_group_names = DyntrainModel._getLinearGroupNames(self.model)
for group in linear_group_names:
for key in group:
if DyntrainModel.isModuleIn16bitOutlist(key):
replace_module(self.model, key, DynamicConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=torch.float16))
else:
replace_module(self.model, key, DynamicConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=torch.float32))
replace_module(self.model, key, self._getModule(key, quantize, "cuda:0", "cpu"))
self.frozen_linear_groups.append(LinearGroup(self.model, group))
self.model.model.embed_tokens = self.model.model.embed_tokens.to(torch.float16)
for group in self.frozen_linear_groups:
group.setFrozen(True)
self.reshuffleActive()
group.setFrozen(True, False)
def _get_nonlinear_names(layer: torch.nn.Module):
def _getModule(self, key: str, quantize: bool, active_device: torch.device, cold_device: torch.device):
output_dtype = torch.float16 if DyntrainModel.isModuleIn16bitOutlist(key) else torch.float32
modules = dict(self.model.named_modules())
if quantize:
return DynamicQantizedLinear.fromLinear(modules[key], active_device, cold_device, output_dtype, torch.float16)
else:
return DynamicConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=output_dtype)
def _getNonlinearNames(layer: torch.nn.Module):
names = list()
modules = dict(layer.named_modules())
@ -85,7 +107,7 @@ class DyntrainModel:
names.append(key)
return names
def _get_linear_group_names(layer: torch.nn.Module) -> list[list[str]]:
def _getLinearGroupNames(layer: torch.nn.Module) -> list[list[str]]:
linear_groups = list()
list_counter = 0
in_sequence = False
@ -140,8 +162,11 @@ class DyntrainModel:
def reshuffleActive(self) -> None:
active_count = len(self.active_linear_groups)
index = 0
while len(self.active_linear_groups) > active_count * (1 - self.reshuffle_fraction):
group = self.active_linear_groups.pop(0)
distance, error = self.active_linear_groups[index].checkDistance()
print(f"linear group has moved {distance} with an error of {error}")
group = self.active_linear_groups.pop(index)
group.setFrozen(True)
self.frozen_linear_groups.append(group)
@ -161,25 +186,39 @@ class DyntrainModel:
assert self.target_active_params * 1.3 > active_params and self.target_active_params * 0.7 < active_params
def activeParamtersByDevice(self) -> list[int]:
out = [0] * len(self.devices)
for group in self.active_linear_groups:
out[self.devices.index(group.getDevice())] += group.paramCount()
return out
def balanceActive(self) -> None:
device_groups = list()
for index in range(0, len(self.devices)):
device_groups.append(list())
active_counts = self.activeParamtersByDevice()
bits_per_param = list()
for i, count in enumerate(active_counts):
memory = torch.cuda.get_device_properties(self.devices[i]).total_memory
if i == 0:
memory = memory * 0.8
bits_per_param.append(count / memory)
max_index, max_bits_per_param = max(enumerate(active_counts), key=lambda x: x[1])
min_index, min_bits_per_param = min(enumerate(active_counts), key=lambda x: x[1])
for group in self.active_linear_groups:
device_groups[self.devices.index(group.getDevice())].append(group)
min_index, min_count = min(enumerate(len(grouplist) for grouplist in device_groups), key=lambda x: x[1])
max_index, max_count = max(enumerate(len(grouplist) for grouplist in device_groups), key=lambda x: x[1])
if max_count - 2 > min_count:
device_groups[max_index][0].inplaceTo(device=self.devices[min_index])
self.balanceActive()
if group.getDevice() is self.devices[max_index]:
memory = torch.cuda.get_device_properties(self.devices[max_index]).total_memory
if max_index == 0:
memory = memory * 0.8
swing = group.paramCount() / memory
if max_bits_per_param - swing > min_bits_per_param + swing:
group.inplaceTo(device=self.devices[min_index])
self.balanceActive()
def toDevices(self, devices: list[torch.device]) -> None:
assert len(devices) > 0
modules = dict(self.model.named_modules())
total_memory = sum(torch.cuda.get_device_properties(d).total_memory for d in devices)
total_memory -= torch.cuda.get_device_properties(devices[0]).total_memory * 0.2
static_param_count = self.staticParameterCount()
total_parameter_count = static_param_count + self.dynamicParameterCount()
params_per_byte = total_parameter_count / float(total_memory)
@ -187,14 +226,17 @@ class DyntrainModel:
self.devices = devices
for key in DyntrainModel._get_nonlinear_names(self.model):
for key in DyntrainModel._getNonlinearNames(self.model):
replace_module(self.model, key, modules[key].to(devices[0]))
linear_groups = self.active_linear_groups + self.frozen_linear_groups
group_index = 0
for device in devices[:-1]:
params_for_device = torch.cuda.get_device_properties(devices).total_memory * params_per_byte
for i, device in enumerate(devices[:-1]):
memory = torch.cuda.get_device_properties(devices).total_memory
if i == 0:
memory = memory * 0.8
params_for_device = memory * params_per_byte
params = 0
while params_for_device > params and group_index < len(linear_groups):
linear_groups[group_index].inplaceTo(device=device)
@ -204,3 +246,6 @@ class DyntrainModel:
while group_index < len(linear_groups):
linear_groups[group_index].inplaceTo(device=devices[-1])
group_index += 1
for group in tqdm(linear_groups, desc="Perpareing layers"):
group.compress()

View File

@ -20,10 +20,23 @@ class Linear(torch.nn.Linear):
new_module.bias = in_module.bias
return new_module
def setFrozen(self, frozen: bool):
def compress(self) -> None:
self.inplaceTo(torch.float16)
def decompress(self) -> None:
self.inplaceTo(torch.float32)
def setFrozen(self, frozen: bool, convert: bool = True):
self.weight.requires_grad = not frozen
if self.bias is not None:
self.bias.requires_grad = not frozen
if convert:
if frozen:
breakpoint()
self.compress()
else:
self.decompress()
self.weightStart = torch.Tensor(self.weight).clone().detach()
def isFrozen(self) -> bool:
return not self.weight.requires_grad
@ -38,7 +51,7 @@ class Linear(torch.nn.Linear):
self.weight = torch.nn.Parameter(self.weight.to(device))
if self.bias is not None:
self.bias = torch.nn.Parameter(self.bias.to(device))
Linear.setFrozen(self, frozen)
Linear.setFrozen(self, frozen, False)
def _apply(self, fn, recurse: bool = True):
if fn.__name__ == "convert":
@ -72,17 +85,12 @@ class DynamicConvertingLinear(Linear):
new_module.bias = in_module.bias
return new_module
def setFrozen(self, frozen: bool):
super().setFrozen(frozen)
if frozen:
self.inplaceTo(torch.float16)
else:
self.inplaceTo(torch.float32)
def setOutputDevice(self, output_device: torch.device):
self.output_device = output_device
def checkDistance(self) -> tuple[float, float]:
return (10.0, 0.0)
def forward(self, input: torch.Tensor):
output_dtype = input.dtype if self.output_dtype is None else self.output_dtype
output_device = input.device if self.output_device is None else self.output_device
@ -120,7 +128,7 @@ class DynamicQantizedLinear(Linear):
new_module.bias = torch.nn.Parameter(in_module.bias.to(torch.float32).to(cold_device)) if new_module.bias is not None else None
return new_module
def quantize(self):
def compress(self) -> None:
weight = self.weight.contiguous().to(torch.float16).cuda(self.active_device)
self.weight_quantized, self.weight_state = bnb.functional.quantize_4bit(weight, blocksize=self.block_size,
compress_statistics=False, quant_type=self.quant_type)
@ -132,19 +140,15 @@ class DynamicQantizedLinear(Linear):
weight = torch.nn.Parameter(self.weight.to(self.cold_device))
bias = torch.nn.Parameter(self.bias.to(self.cold_device)) if self.bias is not None else None
def dequantize(self):
def decompress(self) -> None:
if self.weight_quantized is None:
raise RuntimeError("forward() called in quantized stated before quantized weights are avialable")
raise RuntimeError("decompress() called in quantized stated before quantized weights are avialable")
dtype = self.weight.dtype
self.weight = torch.nn.Parameter(bnb.functional.dequantize_fp4(self.weight_quantized, self.weight_state).to(dtype).to(self.active_device))
if self.bias_quantized:
self.bias = torch.nn.Parameter(bnb.functional.dequantize_fp4(self.bias_quantized, self.bias_state).to(dtype).to(self.active_device))
self.weight_quantized = None
self.weight_state = None
self.bias_quantized = None
self.bias_state = None
def checkDistance(self) -> float:
def checkDistance(self) -> tuple[float, float]:
if self.weight_quantized is None:
raise RuntimeError("checkDistance() called without quantized weights avialable")
original_weight = self.weight.contiguous().to(torch.float16).cuda(self.active_device)
@ -154,22 +158,13 @@ class DynamicQantizedLinear(Linear):
quant_type=self.quant_type)
dequantized_original_weight = bnb.functional.dequantize_fp4(quantized_original_weight, quantized_original_state).to(original_weight.dtype)
dequantized_weight = bnb.functional.dequantize_fp4(self.weight_quantized, self.weight_state).to(original_weight.dtype)
return (torch.linalg.vector_norm(dequantized_original_weight - dequantized_weight) / dequantized_original_weight.numel()).item()
distance = (torch.linalg.vector_norm(dequantized_original_weight - dequantized_weight).to(torch.float32) / dequantized_original_weight.numel()).item()
error = (torch.linalg.vector_norm(dequantized_original_weight - original_weight).to(torch.float32) / dequantized_original_weight.numel()).item()
return (distance, error)
def setOutputDevice(self, output_device: torch.device):
self.output_device = output_device
def setFrozen(self, frozen: bool) -> None:
if frozen == self.isFrozen():
return
super().setFrozen(frozen)
if frozen:
self.quantize()
else:
self.dequantize()
def forward(self, x: torch.Tensor):
output_dtype = x.dtype if self.output_dtype is None else self.output_dtype
output_device = x.device if self.output_device is None else self.output_device
@ -183,9 +178,27 @@ class DynamicQantizedLinear(Linear):
else:
if self.weight_quantized is None:
raise RuntimeError("forward() called in quantized stated before quantized weights are avialable")
if x.device != self.weight_quantized.device:
x = x.to(self.weight_quantized.device)
bias = None
if self.bias_quantized is not None:
bias = bnb.functional.dequantize_fp4(self.bias_quantized, self.bias_state).to(x.dtype)
out = bnb.matmul_4bit(x, self.weight_quantized.t(), bias=bias, quant_state=self.weight_state)
return out.to(output_device).to(output_dtype)
def inplaceTo(self, dtype: torch.dtype = None, device: torch.device = None):
if dtype is not None:
super().inplaceTo(dtype=dtype)
if device is not None:
frozen = self.isFrozen()
self.active_device = device
if self.weight_quantized is not None:
self.weight_quantized = self.weight_quantized.to(device)
self.weight_state = self.weight_state.to(device)
if self.bias_quantized is not None:
self.bias_quantized = self.bias_quantized.to(device)
self.bias_state = self.bias_state.to(device)
if not frozen:
super().inplaceTo(device=device)
self.setFrozen(frozen, False)

View File

@ -39,10 +39,11 @@ def get_optimizer(dyamic_parameters: list[torch.nn.parameter], static_parameters
parameters = list()
parameters.extend({'params': p} for p in dyamic_parameters if p.requires_grad)
param_ids = set([id(p['params']) for p in parameters])
for param in static_parameters:
if param.requires_grad and id(param) not in param_ids:
parameters.append({'params': param, 'lr': static_lr})
param_ids.add(id(param))
if static_parameters is not None:
for param in static_parameters:
if param.requires_grad and id(param) not in param_ids:
parameters.append({'params': param, 'lr': static_lr})
param_ids.add(id(param))
if not adam8bit:
optimizer = torch.optim.AdamW(parameters, weight_decay=weight_decay, lr=lr, eps=training_args.adam_epsilon)
@ -55,19 +56,34 @@ def get_optimizer(dyamic_parameters: list[torch.nn.parameter], static_parameters
return optimizer
def evaluate(model: DyntrainModel, dataloader: torch.utils.data.DataLoader) -> float:
print("*** Eval ***")
loss = torch.zeros((1), device="cuda:0")
model.model.eval()
for batch in dataloader:
for key in batch:
batch[key] = batch[key].to("cuda:0")
outputs = model.model(**batch)
loss += outputs.loss
loss = loss / len(dataloader)
print(f"Eval Loss {loss.item()}")
def train(model_args: ModelArguments, data_args: DataArguments, training_args: TrainingArguments):
primary_device = torch.device(training_args.primary_device)
secondary_device = torch.device(training_args.secondary_device)
log_writer = tensorboard.SummaryWriter()
model = DyntrainModel(model_args.model_name_or_path, training_args.cache_dir, target_active_params=training_args.max_instant_params * 1e6,
reshuffle_fraction=training_args.churn_percent / 100.0, gradient_checkpointing=True, trust_remote_code=True)
model.toDevices([primary_device, secondary_device])
reshuffle_fraction=training_args.churn_percent / 100.0, gradient_checkpointing=True, trust_remote_code=True,
quantize=model_args.quantize)
devices = list(torch.device(i) for i in range(0, torch.cuda.device_count()))
model.toDevices(devices)
model.reshuffleActive()
model.balanceActive()
paramter_count = sum(p.numel() for p in model.model.parameters())
active_paramter_count = sum(p.numel() for p in model.model.parameters() if p.requires_grad)
print(f"Training model with {paramter_count/1e6}m parameters and {active_paramter_count/1e6}m instantanous active paramters")
static_parameter_count = model.staticParameterCount() if training_args.train_non_linear_layers else 0
print(f"Training model with {paramter_count/1e6}m parameters and {active_paramter_count/1e6}m instantanous active paramters of which {static_parameter_count} are static")
tokenizer = get_tokenizer(model.model, training_args.cache_dir, model_args)
@ -96,7 +112,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
total_steps = steps_per_epoch * training_args.epochs
optimizer = get_optimizer(model.dynamicParameters(),
model.staticParameters(),
model.staticParameters() if training_args.train_non_linear_layers else None,
training_args.learning_rate,
training_args.learning_rate / dynamic_param_ratio,
training_args.weight_decay,
@ -115,6 +131,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
global_step = 0
model.model.train()
for epoch in range(0, training_args.epochs):
model.model.train()
print("*** Train ***")
print(f'Vram used for model before training starts: {torch.cuda.memory_allocated()/(1024.0*1024.0)}')
for step, batch in enumerate(train_dataloader):
@ -131,17 +148,17 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
model.model.zero_grad()
if global_step % 10 == 0:
print(loss)
if global_step % 5 == 0:
print(f"Train Loss {loss.item()}")
if global_step % 10 == 0 and training_args.max_instant_params != 0:
if global_step % 50 == 0 and training_args.max_instant_params != 0:
lr_scheduler.optimizer = None
del optimizer
model.reshuffleActive()
model.balanceActive()
log_writer.add_scalar("Parameters/train", model.activeParameterCount(), global_step)
optimizer = get_optimizer(model.dynamicParameters(),
model.staticParameters(),
model.staticParameters() if training_args.train_non_linear_layers else None,
training_args.learning_rate,
training_args.learning_rate / dynamic_param_ratio,
training_args.weight_decay,
@ -152,14 +169,19 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
global_step += 1
progress_bar.update()
if global_step > 0:
if global_step % training_args.save_steps == 0:
save_model(model.model, global_step, training_args.output_dir, training_args.max_checkpoints)
if training_args.eval_steps > 0 and global_step % training_args.save_steps == 0:
evaluate(model, eval_dataloader)
if training_args.flush_allocator:
torch.cuda.empty_cache()
if training_args.do_eval and training_args.eval_steps == -1:
evaluate(model, eval_dataloader)
# Evaluation
if training_args.do_eval:
print("*** Evaluate ***")
evaluate(model, eval_dataloader)
save_model(model.model, global_step, training_args.output_dir)