Inactive parameter quanitzation support
This commit is contained in:
parent
3fa1fc254f
commit
c33964371c
11
arguments.py
11
arguments.py
@ -45,6 +45,10 @@ class ModelArguments:
|
||||
default=False,
|
||||
metadata={"help": "Never resize tokenizer embeddings"}
|
||||
)
|
||||
quantize: Optional[bool] = field (
|
||||
default=False,
|
||||
metadata={"help": "Quantize parameters not currently be actively trained"}
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -85,9 +89,8 @@ class TrainingArguments():
|
||||
save_steps: int = field(default=250, metadata={"help": 'How often to save a model'})
|
||||
max_checkpoints: int = field(default=0, metadata={"help": 'the maximum amount of checkpoints to save'})
|
||||
save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'})
|
||||
primary_device: str = field(default="cuda:0", metadata={"help": 'The primary device to use'})
|
||||
secondary_device: str = field(default="cuda:0", metadata={"help": 'The secondary device to use'})
|
||||
train_non_linear_layers: str = field(default=False, metadata={"help": 'train non linear layers'})
|
||||
train_non_linear_layers: Optional[bool] = field(default=False, metadata={"help": 'train non linear layers'})
|
||||
flush_allocator: bool = field(default=False, metadata={"help": 'flush torches allocator on eatch iteration'})
|
||||
max_instant_params: int = field(default=0, metadata={"help": "Maximum amount of paramters to optimize per step in millions"})
|
||||
churn_percent: int = field(default=0, metadata={"help": "The percentage of active parameters to replace when changeing active parameters"})
|
||||
churn_percent: int = field(default=100, metadata={"help": "The percentage of active parameters to replace when changeing active parameters"})
|
||||
eval_steps: int = field(default=-1, metadata={"help": "Number of optimization steps after wich to compute the evaluation loss"})
|
||||
|
103
dyntrainmodel.py
103
dyntrainmodel.py
@ -1,9 +1,10 @@
|
||||
from transformers import AutoModelForCausalLM
|
||||
import torch
|
||||
from utils import replace_module
|
||||
from modules import DynamicConvertingLinear, Linear
|
||||
from modules import DynamicConvertingLinear, Linear, DynamicQantizedLinear
|
||||
from random import randint
|
||||
import math
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class LinearGroup:
|
||||
@ -20,9 +21,9 @@ class LinearGroup:
|
||||
module.inplaceTo(dtype, device)
|
||||
self.modules[-1].setOutputDevice(output_device)
|
||||
|
||||
def setFrozen(self, frozen: bool) -> None:
|
||||
def setFrozen(self, frozen: bool, convert: bool = True) -> None:
|
||||
for module in self.modules:
|
||||
module.setFrozen(frozen)
|
||||
module.setFrozen(frozen, convert)
|
||||
|
||||
def isFrozen(self) -> bool:
|
||||
return self.modules[0].isFrozen()
|
||||
@ -39,9 +40,26 @@ class LinearGroup:
|
||||
def getDevice(self) -> torch.device:
|
||||
return self.modules[0].weight.device
|
||||
|
||||
def compress(self) -> None:
|
||||
for module in self.modules:
|
||||
module.compress()
|
||||
|
||||
def decompress(self) -> None:
|
||||
for module in self.modules:
|
||||
module.decompress()
|
||||
|
||||
def checkDistance(self) -> tuple[float, float]:
|
||||
distance_accum = 0.0
|
||||
error_accum = 0.0
|
||||
for module in self.modules:
|
||||
distance, error = module.checkDistance()
|
||||
distance_accum += distance**2
|
||||
error_accum += error**2
|
||||
return (math.sqrt(distance_accum) / math.sqrt(len(self.modules)), math.sqrt(error_accum) / math.sqrt(len(self.modules)))
|
||||
|
||||
|
||||
class DyntrainModel:
|
||||
def __init__(self, model_name_or_path: str, cache_dir: str,
|
||||
def __init__(self, model_name_or_path: str, cache_dir: str, quantize: bool,
|
||||
target_active_params: int, reshuffle_fraction: float, gradient_checkpointing: bool, trust_remote_code: bool = False):
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name_or_path,
|
||||
@ -55,28 +73,32 @@ class DyntrainModel:
|
||||
if reshuffle_fraction < 0.10 or reshuffle_fraction > 1:
|
||||
raise RuntimeError("reshuffle_percent must be between 0.1 and 1.0")
|
||||
self.devices = list()
|
||||
self.inital_reshufle = True
|
||||
|
||||
if gradient_checkpointing:
|
||||
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
|
||||
|
||||
modules = dict(self.model.named_modules())
|
||||
self.frozen_linear_groups = list()
|
||||
self.active_linear_groups = list()
|
||||
|
||||
linear_group_names = DyntrainModel._get_linear_group_names(self.model)
|
||||
linear_group_names = DyntrainModel._getLinearGroupNames(self.model)
|
||||
for group in linear_group_names:
|
||||
for key in group:
|
||||
if DyntrainModel.isModuleIn16bitOutlist(key):
|
||||
replace_module(self.model, key, DynamicConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=torch.float16))
|
||||
else:
|
||||
replace_module(self.model, key, DynamicConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=torch.float32))
|
||||
replace_module(self.model, key, self._getModule(key, quantize, "cuda:0", "cpu"))
|
||||
self.frozen_linear_groups.append(LinearGroup(self.model, group))
|
||||
self.model.model.embed_tokens = self.model.model.embed_tokens.to(torch.float16)
|
||||
for group in self.frozen_linear_groups:
|
||||
group.setFrozen(True)
|
||||
self.reshuffleActive()
|
||||
group.setFrozen(True, False)
|
||||
|
||||
def _get_nonlinear_names(layer: torch.nn.Module):
|
||||
def _getModule(self, key: str, quantize: bool, active_device: torch.device, cold_device: torch.device):
|
||||
output_dtype = torch.float16 if DyntrainModel.isModuleIn16bitOutlist(key) else torch.float32
|
||||
modules = dict(self.model.named_modules())
|
||||
if quantize:
|
||||
return DynamicQantizedLinear.fromLinear(modules[key], active_device, cold_device, output_dtype, torch.float16)
|
||||
else:
|
||||
return DynamicConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=output_dtype)
|
||||
|
||||
def _getNonlinearNames(layer: torch.nn.Module):
|
||||
names = list()
|
||||
modules = dict(layer.named_modules())
|
||||
|
||||
@ -85,7 +107,7 @@ class DyntrainModel:
|
||||
names.append(key)
|
||||
return names
|
||||
|
||||
def _get_linear_group_names(layer: torch.nn.Module) -> list[list[str]]:
|
||||
def _getLinearGroupNames(layer: torch.nn.Module) -> list[list[str]]:
|
||||
linear_groups = list()
|
||||
list_counter = 0
|
||||
in_sequence = False
|
||||
@ -140,8 +162,11 @@ class DyntrainModel:
|
||||
|
||||
def reshuffleActive(self) -> None:
|
||||
active_count = len(self.active_linear_groups)
|
||||
index = 0
|
||||
while len(self.active_linear_groups) > active_count * (1 - self.reshuffle_fraction):
|
||||
group = self.active_linear_groups.pop(0)
|
||||
distance, error = self.active_linear_groups[index].checkDistance()
|
||||
print(f"linear group has moved {distance} with an error of {error}")
|
||||
group = self.active_linear_groups.pop(index)
|
||||
group.setFrozen(True)
|
||||
self.frozen_linear_groups.append(group)
|
||||
|
||||
@ -161,25 +186,39 @@ class DyntrainModel:
|
||||
|
||||
assert self.target_active_params * 1.3 > active_params and self.target_active_params * 0.7 < active_params
|
||||
|
||||
def activeParamtersByDevice(self) -> list[int]:
|
||||
out = [0] * len(self.devices)
|
||||
for group in self.active_linear_groups:
|
||||
out[self.devices.index(group.getDevice())] += group.paramCount()
|
||||
return out
|
||||
|
||||
def balanceActive(self) -> None:
|
||||
device_groups = list()
|
||||
for index in range(0, len(self.devices)):
|
||||
device_groups.append(list())
|
||||
active_counts = self.activeParamtersByDevice()
|
||||
bits_per_param = list()
|
||||
for i, count in enumerate(active_counts):
|
||||
memory = torch.cuda.get_device_properties(self.devices[i]).total_memory
|
||||
if i == 0:
|
||||
memory = memory * 0.8
|
||||
bits_per_param.append(count / memory)
|
||||
|
||||
max_index, max_bits_per_param = max(enumerate(active_counts), key=lambda x: x[1])
|
||||
min_index, min_bits_per_param = min(enumerate(active_counts), key=lambda x: x[1])
|
||||
|
||||
for group in self.active_linear_groups:
|
||||
device_groups[self.devices.index(group.getDevice())].append(group)
|
||||
|
||||
min_index, min_count = min(enumerate(len(grouplist) for grouplist in device_groups), key=lambda x: x[1])
|
||||
max_index, max_count = max(enumerate(len(grouplist) for grouplist in device_groups), key=lambda x: x[1])
|
||||
|
||||
if max_count - 2 > min_count:
|
||||
device_groups[max_index][0].inplaceTo(device=self.devices[min_index])
|
||||
self.balanceActive()
|
||||
if group.getDevice() is self.devices[max_index]:
|
||||
memory = torch.cuda.get_device_properties(self.devices[max_index]).total_memory
|
||||
if max_index == 0:
|
||||
memory = memory * 0.8
|
||||
swing = group.paramCount() / memory
|
||||
if max_bits_per_param - swing > min_bits_per_param + swing:
|
||||
group.inplaceTo(device=self.devices[min_index])
|
||||
self.balanceActive()
|
||||
|
||||
def toDevices(self, devices: list[torch.device]) -> None:
|
||||
assert len(devices) > 0
|
||||
modules = dict(self.model.named_modules())
|
||||
total_memory = sum(torch.cuda.get_device_properties(d).total_memory for d in devices)
|
||||
total_memory -= torch.cuda.get_device_properties(devices[0]).total_memory * 0.2
|
||||
static_param_count = self.staticParameterCount()
|
||||
total_parameter_count = static_param_count + self.dynamicParameterCount()
|
||||
params_per_byte = total_parameter_count / float(total_memory)
|
||||
@ -187,14 +226,17 @@ class DyntrainModel:
|
||||
|
||||
self.devices = devices
|
||||
|
||||
for key in DyntrainModel._get_nonlinear_names(self.model):
|
||||
for key in DyntrainModel._getNonlinearNames(self.model):
|
||||
replace_module(self.model, key, modules[key].to(devices[0]))
|
||||
|
||||
linear_groups = self.active_linear_groups + self.frozen_linear_groups
|
||||
|
||||
group_index = 0
|
||||
for device in devices[:-1]:
|
||||
params_for_device = torch.cuda.get_device_properties(devices).total_memory * params_per_byte
|
||||
for i, device in enumerate(devices[:-1]):
|
||||
memory = torch.cuda.get_device_properties(devices).total_memory
|
||||
if i == 0:
|
||||
memory = memory * 0.8
|
||||
params_for_device = memory * params_per_byte
|
||||
params = 0
|
||||
while params_for_device > params and group_index < len(linear_groups):
|
||||
linear_groups[group_index].inplaceTo(device=device)
|
||||
@ -204,3 +246,6 @@ class DyntrainModel:
|
||||
while group_index < len(linear_groups):
|
||||
linear_groups[group_index].inplaceTo(device=devices[-1])
|
||||
group_index += 1
|
||||
|
||||
for group in tqdm(linear_groups, desc="Perpareing layers"):
|
||||
group.compress()
|
||||
|
73
modules.py
73
modules.py
@ -20,10 +20,23 @@ class Linear(torch.nn.Linear):
|
||||
new_module.bias = in_module.bias
|
||||
return new_module
|
||||
|
||||
def setFrozen(self, frozen: bool):
|
||||
def compress(self) -> None:
|
||||
self.inplaceTo(torch.float16)
|
||||
|
||||
def decompress(self) -> None:
|
||||
self.inplaceTo(torch.float32)
|
||||
|
||||
def setFrozen(self, frozen: bool, convert: bool = True):
|
||||
self.weight.requires_grad = not frozen
|
||||
if self.bias is not None:
|
||||
self.bias.requires_grad = not frozen
|
||||
if convert:
|
||||
if frozen:
|
||||
breakpoint()
|
||||
self.compress()
|
||||
else:
|
||||
self.decompress()
|
||||
self.weightStart = torch.Tensor(self.weight).clone().detach()
|
||||
|
||||
def isFrozen(self) -> bool:
|
||||
return not self.weight.requires_grad
|
||||
@ -38,7 +51,7 @@ class Linear(torch.nn.Linear):
|
||||
self.weight = torch.nn.Parameter(self.weight.to(device))
|
||||
if self.bias is not None:
|
||||
self.bias = torch.nn.Parameter(self.bias.to(device))
|
||||
Linear.setFrozen(self, frozen)
|
||||
Linear.setFrozen(self, frozen, False)
|
||||
|
||||
def _apply(self, fn, recurse: bool = True):
|
||||
if fn.__name__ == "convert":
|
||||
@ -72,17 +85,12 @@ class DynamicConvertingLinear(Linear):
|
||||
new_module.bias = in_module.bias
|
||||
return new_module
|
||||
|
||||
def setFrozen(self, frozen: bool):
|
||||
super().setFrozen(frozen)
|
||||
|
||||
if frozen:
|
||||
self.inplaceTo(torch.float16)
|
||||
else:
|
||||
self.inplaceTo(torch.float32)
|
||||
|
||||
def setOutputDevice(self, output_device: torch.device):
|
||||
self.output_device = output_device
|
||||
|
||||
def checkDistance(self) -> tuple[float, float]:
|
||||
return (10.0, 0.0)
|
||||
|
||||
def forward(self, input: torch.Tensor):
|
||||
output_dtype = input.dtype if self.output_dtype is None else self.output_dtype
|
||||
output_device = input.device if self.output_device is None else self.output_device
|
||||
@ -120,7 +128,7 @@ class DynamicQantizedLinear(Linear):
|
||||
new_module.bias = torch.nn.Parameter(in_module.bias.to(torch.float32).to(cold_device)) if new_module.bias is not None else None
|
||||
return new_module
|
||||
|
||||
def quantize(self):
|
||||
def compress(self) -> None:
|
||||
weight = self.weight.contiguous().to(torch.float16).cuda(self.active_device)
|
||||
self.weight_quantized, self.weight_state = bnb.functional.quantize_4bit(weight, blocksize=self.block_size,
|
||||
compress_statistics=False, quant_type=self.quant_type)
|
||||
@ -132,19 +140,15 @@ class DynamicQantizedLinear(Linear):
|
||||
weight = torch.nn.Parameter(self.weight.to(self.cold_device))
|
||||
bias = torch.nn.Parameter(self.bias.to(self.cold_device)) if self.bias is not None else None
|
||||
|
||||
def dequantize(self):
|
||||
def decompress(self) -> None:
|
||||
if self.weight_quantized is None:
|
||||
raise RuntimeError("forward() called in quantized stated before quantized weights are avialable")
|
||||
raise RuntimeError("decompress() called in quantized stated before quantized weights are avialable")
|
||||
dtype = self.weight.dtype
|
||||
self.weight = torch.nn.Parameter(bnb.functional.dequantize_fp4(self.weight_quantized, self.weight_state).to(dtype).to(self.active_device))
|
||||
if self.bias_quantized:
|
||||
self.bias = torch.nn.Parameter(bnb.functional.dequantize_fp4(self.bias_quantized, self.bias_state).to(dtype).to(self.active_device))
|
||||
self.weight_quantized = None
|
||||
self.weight_state = None
|
||||
self.bias_quantized = None
|
||||
self.bias_state = None
|
||||
|
||||
def checkDistance(self) -> float:
|
||||
def checkDistance(self) -> tuple[float, float]:
|
||||
if self.weight_quantized is None:
|
||||
raise RuntimeError("checkDistance() called without quantized weights avialable")
|
||||
original_weight = self.weight.contiguous().to(torch.float16).cuda(self.active_device)
|
||||
@ -154,22 +158,13 @@ class DynamicQantizedLinear(Linear):
|
||||
quant_type=self.quant_type)
|
||||
dequantized_original_weight = bnb.functional.dequantize_fp4(quantized_original_weight, quantized_original_state).to(original_weight.dtype)
|
||||
dequantized_weight = bnb.functional.dequantize_fp4(self.weight_quantized, self.weight_state).to(original_weight.dtype)
|
||||
return (torch.linalg.vector_norm(dequantized_original_weight - dequantized_weight) / dequantized_original_weight.numel()).item()
|
||||
distance = (torch.linalg.vector_norm(dequantized_original_weight - dequantized_weight).to(torch.float32) / dequantized_original_weight.numel()).item()
|
||||
error = (torch.linalg.vector_norm(dequantized_original_weight - original_weight).to(torch.float32) / dequantized_original_weight.numel()).item()
|
||||
return (distance, error)
|
||||
|
||||
def setOutputDevice(self, output_device: torch.device):
|
||||
self.output_device = output_device
|
||||
|
||||
def setFrozen(self, frozen: bool) -> None:
|
||||
if frozen == self.isFrozen():
|
||||
return
|
||||
|
||||
super().setFrozen(frozen)
|
||||
|
||||
if frozen:
|
||||
self.quantize()
|
||||
else:
|
||||
self.dequantize()
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
output_dtype = x.dtype if self.output_dtype is None else self.output_dtype
|
||||
output_device = x.device if self.output_device is None else self.output_device
|
||||
@ -183,9 +178,27 @@ class DynamicQantizedLinear(Linear):
|
||||
else:
|
||||
if self.weight_quantized is None:
|
||||
raise RuntimeError("forward() called in quantized stated before quantized weights are avialable")
|
||||
if x.device != self.weight_quantized.device:
|
||||
x = x.to(self.weight_quantized.device)
|
||||
bias = None
|
||||
if self.bias_quantized is not None:
|
||||
bias = bnb.functional.dequantize_fp4(self.bias_quantized, self.bias_state).to(x.dtype)
|
||||
out = bnb.matmul_4bit(x, self.weight_quantized.t(), bias=bias, quant_state=self.weight_state)
|
||||
|
||||
return out.to(output_device).to(output_dtype)
|
||||
|
||||
def inplaceTo(self, dtype: torch.dtype = None, device: torch.device = None):
|
||||
if dtype is not None:
|
||||
super().inplaceTo(dtype=dtype)
|
||||
if device is not None:
|
||||
frozen = self.isFrozen()
|
||||
self.active_device = device
|
||||
if self.weight_quantized is not None:
|
||||
self.weight_quantized = self.weight_quantized.to(device)
|
||||
self.weight_state = self.weight_state.to(device)
|
||||
if self.bias_quantized is not None:
|
||||
self.bias_quantized = self.bias_quantized.to(device)
|
||||
self.bias_state = self.bias_state.to(device)
|
||||
if not frozen:
|
||||
super().inplaceTo(device=device)
|
||||
self.setFrozen(frozen, False)
|
||||
|
@ -39,10 +39,11 @@ def get_optimizer(dyamic_parameters: list[torch.nn.parameter], static_parameters
|
||||
parameters = list()
|
||||
parameters.extend({'params': p} for p in dyamic_parameters if p.requires_grad)
|
||||
param_ids = set([id(p['params']) for p in parameters])
|
||||
for param in static_parameters:
|
||||
if param.requires_grad and id(param) not in param_ids:
|
||||
parameters.append({'params': param, 'lr': static_lr})
|
||||
param_ids.add(id(param))
|
||||
if static_parameters is not None:
|
||||
for param in static_parameters:
|
||||
if param.requires_grad and id(param) not in param_ids:
|
||||
parameters.append({'params': param, 'lr': static_lr})
|
||||
param_ids.add(id(param))
|
||||
|
||||
if not adam8bit:
|
||||
optimizer = torch.optim.AdamW(parameters, weight_decay=weight_decay, lr=lr, eps=training_args.adam_epsilon)
|
||||
@ -55,19 +56,34 @@ def get_optimizer(dyamic_parameters: list[torch.nn.parameter], static_parameters
|
||||
return optimizer
|
||||
|
||||
|
||||
def evaluate(model: DyntrainModel, dataloader: torch.utils.data.DataLoader) -> float:
|
||||
print("*** Eval ***")
|
||||
loss = torch.zeros((1), device="cuda:0")
|
||||
model.model.eval()
|
||||
for batch in dataloader:
|
||||
for key in batch:
|
||||
batch[key] = batch[key].to("cuda:0")
|
||||
outputs = model.model(**batch)
|
||||
loss += outputs.loss
|
||||
loss = loss / len(dataloader)
|
||||
print(f"Eval Loss {loss.item()}")
|
||||
|
||||
|
||||
def train(model_args: ModelArguments, data_args: DataArguments, training_args: TrainingArguments):
|
||||
primary_device = torch.device(training_args.primary_device)
|
||||
secondary_device = torch.device(training_args.secondary_device)
|
||||
log_writer = tensorboard.SummaryWriter()
|
||||
|
||||
model = DyntrainModel(model_args.model_name_or_path, training_args.cache_dir, target_active_params=training_args.max_instant_params * 1e6,
|
||||
reshuffle_fraction=training_args.churn_percent / 100.0, gradient_checkpointing=True, trust_remote_code=True)
|
||||
model.toDevices([primary_device, secondary_device])
|
||||
reshuffle_fraction=training_args.churn_percent / 100.0, gradient_checkpointing=True, trust_remote_code=True,
|
||||
quantize=model_args.quantize)
|
||||
devices = list(torch.device(i) for i in range(0, torch.cuda.device_count()))
|
||||
model.toDevices(devices)
|
||||
model.reshuffleActive()
|
||||
model.balanceActive()
|
||||
|
||||
paramter_count = sum(p.numel() for p in model.model.parameters())
|
||||
active_paramter_count = sum(p.numel() for p in model.model.parameters() if p.requires_grad)
|
||||
print(f"Training model with {paramter_count/1e6}m parameters and {active_paramter_count/1e6}m instantanous active paramters")
|
||||
static_parameter_count = model.staticParameterCount() if training_args.train_non_linear_layers else 0
|
||||
print(f"Training model with {paramter_count/1e6}m parameters and {active_paramter_count/1e6}m instantanous active paramters of which {static_parameter_count} are static")
|
||||
|
||||
tokenizer = get_tokenizer(model.model, training_args.cache_dir, model_args)
|
||||
|
||||
@ -96,7 +112,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
|
||||
total_steps = steps_per_epoch * training_args.epochs
|
||||
|
||||
optimizer = get_optimizer(model.dynamicParameters(),
|
||||
model.staticParameters(),
|
||||
model.staticParameters() if training_args.train_non_linear_layers else None,
|
||||
training_args.learning_rate,
|
||||
training_args.learning_rate / dynamic_param_ratio,
|
||||
training_args.weight_decay,
|
||||
@ -115,6 +131,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
|
||||
global_step = 0
|
||||
model.model.train()
|
||||
for epoch in range(0, training_args.epochs):
|
||||
model.model.train()
|
||||
print("*** Train ***")
|
||||
print(f'Vram used for model before training starts: {torch.cuda.memory_allocated()/(1024.0*1024.0)}')
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
@ -131,17 +148,17 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
|
||||
|
||||
model.model.zero_grad()
|
||||
|
||||
if global_step % 10 == 0:
|
||||
print(loss)
|
||||
if global_step % 5 == 0:
|
||||
print(f"Train Loss {loss.item()}")
|
||||
|
||||
if global_step % 10 == 0 and training_args.max_instant_params != 0:
|
||||
if global_step % 50 == 0 and training_args.max_instant_params != 0:
|
||||
lr_scheduler.optimizer = None
|
||||
del optimizer
|
||||
model.reshuffleActive()
|
||||
model.balanceActive()
|
||||
log_writer.add_scalar("Parameters/train", model.activeParameterCount(), global_step)
|
||||
optimizer = get_optimizer(model.dynamicParameters(),
|
||||
model.staticParameters(),
|
||||
model.staticParameters() if training_args.train_non_linear_layers else None,
|
||||
training_args.learning_rate,
|
||||
training_args.learning_rate / dynamic_param_ratio,
|
||||
training_args.weight_decay,
|
||||
@ -152,14 +169,19 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
|
||||
global_step += 1
|
||||
progress_bar.update()
|
||||
|
||||
if global_step > 0:
|
||||
if global_step % training_args.save_steps == 0:
|
||||
save_model(model.model, global_step, training_args.output_dir, training_args.max_checkpoints)
|
||||
if training_args.eval_steps > 0 and global_step % training_args.save_steps == 0:
|
||||
evaluate(model, eval_dataloader)
|
||||
if training_args.flush_allocator:
|
||||
torch.cuda.empty_cache()
|
||||
if training_args.do_eval and training_args.eval_steps == -1:
|
||||
evaluate(model, eval_dataloader)
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
print("*** Evaluate ***")
|
||||
evaluate(model, eval_dataloader)
|
||||
|
||||
save_model(model.model, global_step, training_args.output_dir)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user