Inactive parameter quanitzation support
This commit is contained in:
11
arguments.py
11
arguments.py
@ -45,6 +45,10 @@ class ModelArguments:
|
||||
default=False,
|
||||
metadata={"help": "Never resize tokenizer embeddings"}
|
||||
)
|
||||
quantize: Optional[bool] = field (
|
||||
default=False,
|
||||
metadata={"help": "Quantize parameters not currently be actively trained"}
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -85,9 +89,8 @@ class TrainingArguments():
|
||||
save_steps: int = field(default=250, metadata={"help": 'How often to save a model'})
|
||||
max_checkpoints: int = field(default=0, metadata={"help": 'the maximum amount of checkpoints to save'})
|
||||
save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'})
|
||||
primary_device: str = field(default="cuda:0", metadata={"help": 'The primary device to use'})
|
||||
secondary_device: str = field(default="cuda:0", metadata={"help": 'The secondary device to use'})
|
||||
train_non_linear_layers: str = field(default=False, metadata={"help": 'train non linear layers'})
|
||||
train_non_linear_layers: Optional[bool] = field(default=False, metadata={"help": 'train non linear layers'})
|
||||
flush_allocator: bool = field(default=False, metadata={"help": 'flush torches allocator on eatch iteration'})
|
||||
max_instant_params: int = field(default=0, metadata={"help": "Maximum amount of paramters to optimize per step in millions"})
|
||||
churn_percent: int = field(default=0, metadata={"help": "The percentage of active parameters to replace when changeing active parameters"})
|
||||
churn_percent: int = field(default=100, metadata={"help": "The percentage of active parameters to replace when changeing active parameters"})
|
||||
eval_steps: int = field(default=-1, metadata={"help": "Number of optimization steps after wich to compute the evaluation loss"})
|
||||
|
Reference in New Issue
Block a user