various optimizations

This commit is contained in:
uvos 2024-07-20 21:47:18 +02:00
parent 2f35689355
commit c38ac65d5b
4 changed files with 151 additions and 101 deletions

View File

@ -68,7 +68,9 @@ class LinearGroup:
class DyntrainModel:
def __init__(self, model_name_or_path: str, cache_dir: str | None, quantize: bool,
target_active_params: int, reshuffle_fraction: float, gradient_checkpointing: bool, trust_remote_code: bool = False):
target_active_params: int, train_static_params: bool,
reshuffle_fraction: float, gradient_checkpointing: bool,
trust_remote_code: bool = False):
self.model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
cache_dir=cache_dir,
@ -82,6 +84,7 @@ class DyntrainModel:
raise RuntimeError("reshuffle_percent must be between 0.1 and 1.0")
self.devices = list[torch.device]()
self.inital_reshufle = True
self.train_static_params = train_static_params
if gradient_checkpointing:
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
@ -167,8 +170,14 @@ class DyntrainModel:
def staticParameterCount(self) -> int:
return sum(p.numel() for p in self.staticParameters())
def activeDynamicParameterCount(self) -> int:
return sum(p.numel() for p in self.dynamicParameters() if p.requires_grad)
def activeParameterCount(self) -> int:
total_params = self.dynamicParameters() + self.staticParameters()
if self.train_static_params:
total_params = self.dynamicParameters() + self.staticParameters()
else:
total_params = self.dynamicParameters()
return sum(p.numel() for p in total_params if p.requires_grad)
def getDistanceAndErrorSample(self) -> (torch.Tensor, torch.Tensor):
@ -187,7 +196,7 @@ class DyntrainModel:
params = self.activeParameterCount()
if params >= self.target_active_params:
RuntimeError("Insuficant active parameters to suffle active")
raise RuntimeError("Insuficant active parameters to suffle active")
while params < self.target_active_params and len(self.frozen_linear_groups) > 0:
i = randint(0, len(self.frozen_linear_groups) - 1)
group = self.frozen_linear_groups.pop(i)
@ -199,7 +208,7 @@ class DyntrainModel:
active_params = self.activeParameterCount()
assert self.target_active_params * 1.3 > active_params and self.target_active_params * 0.7 < active_params
assert self.target_active_params * 1.4 > active_params and self.target_active_params * 0.6 < active_params
def activeParamtersByDevice(self) -> list[int]:
out = [0] * len(self.devices)
@ -213,7 +222,7 @@ class DyntrainModel:
for i, count in enumerate(active_counts):
memory = torch.cuda.get_device_properties(self.devices[i]).total_memory
if i == 0:
memory = int(memory * 0.8)
memory = int(memory * 0.5)
bits_per_param.append(count / memory)
max_index, max_bits_per_param = max(enumerate(active_counts), key=lambda x: x[1])
@ -223,7 +232,7 @@ class DyntrainModel:
if group.getDevice() is self.devices[max_index]:
memory = torch.cuda.get_device_properties(self.devices[max_index]).total_memory
if max_index == 0:
memory = int(memory * 0.8)
memory = int(memory * 0.5)
swing = group.paramCount() / memory
if max_bits_per_param - swing > min_bits_per_param + swing:
group.inplaceTo(device=self.devices[min_index])

View File

@ -108,7 +108,7 @@ class DynamicConvertingLinear(Linear):
class DynamicQantizedLinear(Linear):
def __init__(self, in_features: int, out_features: int, bias: bool, active_device: torch.device, cold_device: torch.device,
output_dtype=None, compute_dtype=None, output_device=None):
output_dtype=None, compute_dtype=None, output_device=None, cold_dtype=torch.float32):
super().__init__(in_features, out_features, bias, cold_device, torch.float32)
self.active_device = active_device
self.cold_device = cold_device
@ -120,8 +120,8 @@ class DynamicQantizedLinear(Linear):
self.bias_quantized = None
self.bias_state = None
self.block_size = 128
self.quant_type = 'nf4'
self.weight_start = self.weight.clone().detach()
#self.weight_start = self.weight.clone().detach()
self.cold_dtype = cold_dtype
@classmethod
def fromLinear(cls, in_module: torch.nn.Linear, active_device: torch.device = torch.device("cuda:0"), cold_device: torch.device = torch.device("cpu"),
@ -131,19 +131,19 @@ class DynamicQantizedLinear(Linear):
compute_dtype=compute_dtype, output_device=output_device)
new_module.weight = torch.nn.Parameter(in_module.weight.to(torch.float32).to(cold_device))
new_module.bias = torch.nn.Parameter(in_module.bias.to(torch.float32).to(cold_device)) if new_module.bias is not None else None
new_module.weight_start = new_module.weight.clone().detach()
#new_module.weight_start = new_module.weight.clone().detach()
return new_module
def compress(self) -> None:
weight = self.weight.contiguous().to(torch.float16).cuda(self.active_device)
weight = self.weight.contiguous().to(torch.float16).to(self.active_device)
self.weight_quantized, self.weight_state = bnb.functional.quantize_blockwise(weight, blocksize=self.block_size)
if self.bias is not None:
bias = self.bias.contiguous().to(torch.float16).cuda(self.active_device)
bias = self.bias.contiguous().to(torch.float16).to(self.active_device)
self.bias_quantized, self.bias_state = bnb.functional.quantize_blockwise(bias, blocksize=self.block_size)
frozen = self.isFrozen()
self.weight = torch.nn.Parameter(self.weight.to(self.cold_device))
self.bias = torch.nn.Parameter(self.bias.to(self.cold_device)) if self.bias is not None else None
self.weight = torch.nn.Parameter(self.weight.to(self.cold_dtype).to(self.cold_device))
self.bias = torch.nn.Parameter(self.bias.to(self.cold_dtype).to(self.cold_device)) if self.bias is not None else None
self.setFrozen(frozen, False)
def decompress(self) -> None:
@ -151,16 +151,16 @@ class DynamicQantizedLinear(Linear):
self.weight_state = None
self.bias_quantized = None
self.bias_state = None
self.weight_start = self.weight.clone().detach().to(self.cold_device)
self.weight = torch.nn.Parameter(self.weight.to(self.active_device))
#self.weight_start = self.weight.clone().detach().to(self.cold_device)
self.weight = torch.nn.Parameter(self.weight.to(self.active_device).to(torch.float32))
if self.bias_quantized:
self.bias = torch.nn.Parameter(self.bias.to(self.active_device))
self.bias = torch.nn.Parameter(self.bias.to(self.active_device).to(torch.float32))
def getDistanceAndError(self) -> tuple[torch.Tensor, torch.Tensor]:
original_weight = self.weight.contiguous().to(self.active_device).to(torch.float16)
quantized_original_weight, quantized_original_state = bnb.functional.quantize_blockwise(original_weight, blocksize=self.block_size)
dequantized_original_weight = bnb.functional.dequantize_blockwise(quantized_original_weight, quantized_original_state).to(original_weight.dtype)
distance = (self.weight_start - self.weight.to(self.cold_device)).to(torch.float32)
distance = torch.zeros((2)) #(self.weight_start - self.weight.to(self.cold_device)).to(torch.float32)
error = (dequantized_original_weight - original_weight).to(torch.float32)
return (distance, error)

View File

@ -30,13 +30,13 @@ def smart_tokenizer_and_embedding_resize(
def get_tokenizer(model, cache_dir, model_args: ModelArguments):
print(f'Tokenizer: {model_args.tokenizer if model_args.tokenizer is not None else model_args.model_name_or_path}')
tokenizer_path = model_args.tokenizer if model_args.tokenizer is not None else model_args.model_name_or_path
print(f'Tokenizer: {tokenizer_path}')
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.tokenizer if model_args.tokenizer is not None else model_args.model_name_or_path,
tokenizer_path,
cache_dir=cache_dir,
padding_side="right",
use_fast=False,
eos_token="[EOS]",
tokenizer_type='llama' if 'llama' in model_args.model_name_or_path else None,
trust_remote_code=model_args.trust_remote_code
)

View File

@ -1,6 +1,4 @@
import transformers
from transformers import get_scheduler
import torch
from torch.utils import tensorboard
import os
@ -8,9 +6,10 @@ import shutil
import math
from tqdm.auto import tqdm
import gc
import sys
from arguments import DataArguments, ModelArguments, TrainingArguments
from datamodules import create_data_module_s2s, create_data_module, create_data_module_hub
from datamodules import get_data_loaders
from tokenizer import get_tokenizer
from dyntrainmodel import DyntrainModel
@ -19,7 +18,16 @@ from dyntrainmodel import DyntrainModel
def save_model(model, global_step: int, output_dir: str, max_checkpoints: int = 0):
output_chkpt_dir = f"step_{global_step}" if global_step >= 0 else ""
output_dir = os.path.join(output_dir, output_chkpt_dir)
print(f"saveing model to {output_chkpt_dir}")
temperature = model.generation_config.temperature
top_p = model.generation_config.top_p
model.generation_config.temperature = None
model.generation_config.top_p = None
model.save_pretrained(output_dir)
model.generation_config.temperature = temperature
model.generation_config.top_p = top_p
if max_checkpoints > 0:
files = [f for f in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, f)) and f.startswith("step_")]
@ -57,37 +65,85 @@ def get_optimizer(dyamic_parameters: list[torch.nn.Parameter], static_parameters
return optimizer
def move_optimizer_param(param, device: torch.device, device_map: dict):
if isinstance(param, torch.Tensor):
move_device = device if device is not None else device_map[id(param)]
assert device is not None or move_device != torch.device("cpu")
old_device = param.device
param.data = param.data.to(move_device)
if param._grad is not None:
param._grad.data = param._grad.data.to(move_device)
if device is not None and id(param) not in device_map:
device_map[id(param)] = old_device
assert old_device != torch.device("cpu")
elif isinstance(param, dict):
for subparam in param.values():
move_optimizer_param(subparam, device, device_map)
def suspend_optimizer(optimizer) -> dict:
device_map = dict()
for param in optimizer.state.values():
move_optimizer_param(param, torch.device("cpu"), device_map)
return device_map
def resume_optimizer(optimizer, device_map: dict):
for param in optimizer.state.values():
move_optimizer_param(param, None, device_map)
def evaluate(model: DyntrainModel, tokenizer,
dataloader: torch.utils.data.DataLoader, globalstep: int,
log_writer: tensorboard.SummaryWriter, eval_prompt: str | None = None):
print("*** Eval ***")
loss = torch.zeros((1), device="cuda:0")
model.model.eval()
for batch in dataloader:
for key in batch:
batch[key] = batch[key].to("cuda:0")
outputs = model.model(**batch)
loss += outputs.loss
loss = loss / len(dataloader)
log_writer.add_scalar("Loss/Eval", loss, globalstep)
print(f"Eval Loss {loss.item()}")
return loss.item()
with torch.no_grad():
loss = torch.zeros((1), device="cuda:0")
model.model.eval()
if eval_prompt is not None:
input_ids = tokenizer(eval_prompt, return_tensors="pt").input_ids.to(model.devices[0])
attention_mask = torch.ones(input_ids.shape, device=model.devices[0], requires_grad=False)
outputs = model.generate(input_ids, attention_mask=attention_mask, do_sample=True, temperature=1, max_new_tokens=100)
response_decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(f"Eval generation: {response_decoded}")
log_writer.add_text("Text/Eval", response_decoded, globalstep)
for batch in tqdm(dataloader, desc="Doing eval"):
for key in batch:
batch[key] = batch[key].to("cuda:0")
outputs = model.model(**batch)
loss += outputs.loss
loss = loss / len(dataloader)
log_writer.add_scalar("Loss/Eval", loss, globalstep)
print(f"Eval Loss {loss.item()}")
if eval_prompt is not None:
input_ids = tokenizer(eval_prompt, return_tensors="pt").input_ids.to(model.devices[0])
attention_mask = torch.ones(input_ids.shape, device=model.devices[0], requires_grad=False)
outputs = model.model.generate(input_ids, attention_mask=attention_mask, do_sample=True, temperature=1,
max_new_tokens=100, min_new_tokens=100)
response_decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(f"Eval generation: {response_decoded}")
log_writer.add_text("Text/Eval", response_decoded, globalstep)
model.model.train()
def max_vram_allocated():
max_vram_alloc = 0
for i in range(0, torch.cuda.device_count()):
max_vram_alloc = max(torch.cuda.memory_allocated(i), max_vram_alloc)
return max_vram_alloc
def min_vram_allocated():
max_vram_alloc = sys.maxsize
for i in range(0, torch.cuda.device_count()):
max_vram_alloc = min(torch.cuda.memory_allocated(i), max_vram_alloc)
return max_vram_alloc
def train(model_args: ModelArguments, data_args: DataArguments, training_args: TrainingArguments):
log_writer = tensorboard.SummaryWriter()
log_writer = tensorboard.SummaryWriter(log_dir=training_args.logging_dir)
model = DyntrainModel(model_args.model_name_or_path, training_args.cache_dir, target_active_params=int(training_args.max_instant_params * 1e6),
reshuffle_fraction=training_args.churn_percent / 100.0, gradient_checkpointing=True, trust_remote_code=True,
quantize=model_args.quantize)
model = DyntrainModel(model_args.model_name_or_path, training_args.cache_dir,
quantize=model_args.quantize,
target_active_params=int(training_args.max_instant_params * 1e6),
train_static_params=training_args.train_non_linear_layers,
reshuffle_fraction=training_args.churn_percent / 100.0,
gradient_checkpointing=True,
trust_remote_code=True)
devices = list(torch.device(i) for i in range(0, torch.cuda.device_count()))
model.toDevices(devices)
model.reshuffleActive()
@ -96,34 +152,15 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
paramter_count = sum(p.numel() for p in model.model.parameters())
active_paramter_count = sum(p.numel() for p in model.model.parameters() if p.requires_grad)
static_parameter_count = model.staticParameterCount() if training_args.train_non_linear_layers else 0
print(f"Training model with {paramter_count / 1e6}m parameters and {active_paramter_count / 1e6}m"
print(f"Training model with {paramter_count / 1e6}m parameters and {active_paramter_count / 1e6}m "
f"instantanous active paramters of which {static_parameter_count} are static")
tokenizer = get_tokenizer(model.model, training_args.cache_dir, model_args)
if data_args.dataset.endswith("json") or data_args.dataset.endswith("jsonl"):
print("Loading dataset in s2s mode")
data_module = create_data_module_s2s(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
elif data_args.data_from_hub:
data_module = create_data_module_hub(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
else:
print("Loading dataset in txt mode")
data_module = create_data_module(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
dataset = {k: v for k, v in data_module.items() if k != 'predict_dataset'}
train_dataloader = torch.utils.data.DataLoader(
dataset['train_dataset'],
shuffle=True,
collate_fn=dataset['data_collator'],
batch_size=training_args.per_device_train_batch_size
) if dataset['train_dataset'] is not None else None
if training_args.do_eval:
eval_dataloader = torch.utils.data.DataLoader(
dataset['eval_dataset'],
shuffle=True,
collate_fn=dataset['data_collator'],
batch_size=training_args.per_device_train_batch_size
)
train_dataloader, eval_dataloader = get_data_loaders(tokenizer, data_args,
training_args.per_device_train_batch_size,
training_args.per_device_eval_batch_size,
training_args.do_train, training_args.do_eval)
dynamic_param_ratio = (model.staticParameterCount() + model.dynamicParameterCount()) / model.dynamicParameterCount()
steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps) if train_dataloader is not None else 1
@ -137,7 +174,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
training_args.adam_epsilon,
training_args.adam8bit)
lr_scheduler = get_scheduler(
lr_scheduler = transformers.get_scheduler(
name=training_args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=training_args.warmup_steps,
@ -149,13 +186,11 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
global_step = 0
model.model.train()
for epoch in range(0, training_args.epochs):
model.model.train()
print("*** Train ***")
print(f'Vram used for model before training starts: {torch.cuda.memory_allocated()/(1024.0*1024.0)}')
print(f'Vram used for model before training starts: {torch.cuda.memory_allocated()/(1024.0**3):.2f}')
for step, batch in enumerate(train_dataloader):
for key in batch:
batch[key] = batch[key].to("cuda:0")
outputs = model.model(**batch)
loss = outputs.loss / training_args.gradient_accumulation_steps
loss.backward()
@ -166,46 +201,52 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
optimizer.step()
lr_scheduler.step()
progress_bar.set_postfix_str(f"Loss: {loss.item():.2f} Max: {max_vram_allocated()/(1024.0**3):.2f}GB"
f" Min: {min_vram_allocated()/(1024.0**3):.2f}GB")
model.model.zero_grad()
if global_step % 5 == 0:
print(f"Train Loss {loss.item()}")
if global_step > 0:
if global_step % training_args.reshufle_steps == 0 and training_args.max_instant_params != 0:
print("Reshuffleing")
lr_scheduler.optimizer = None
del optimizer
# distance, error = model.getDistanceAndErrorSample()
# log_writer.add_histogram("Distances/Train", distance, max_bins=50)
# log_writer.add_histogram("Errors/Train", error, max_bins=50)
if global_step % training_args.reshufle_steps == 0 and training_args.max_instant_params != 0:
print("Reshuffleing")
lr_scheduler.optimizer = None
del optimizer
# distance, error = model.getDistanceAndErrorSample()
# log_writer.add_histogram("Distances/Train", distance, max_bins=50)
# log_writer.add_histogram("Errors/Train", error, max_bins=50)
model.reshuffleActive()
model.balanceActive()
log_writer.add_scalar("Parameters/train", model.activeParameterCount(), global_step)
optimizer = get_optimizer(model.dynamicParameters(),
model.staticParameters() if training_args.train_non_linear_layers else None,
training_args.learning_rate,
training_args.learning_rate / dynamic_param_ratio,
training_args.weight_decay,
training_args.adam_epsilon,
training_args.adam8bit)
lr_scheduler.optimizer = optimizer
model.reshuffleActive()
model.balanceActive()
log_writer.add_scalar("Parameters/train", model.activeParameterCount(), global_step)
optimizer = get_optimizer(model.dynamicParameters(),
model.staticParameters() if training_args.train_non_linear_layers else None,
training_args.learning_rate,
training_args.learning_rate / dynamic_param_ratio,
training_args.weight_decay,
training_args.adam_epsilon,
training_args.adam8bit)
lr_scheduler.optimizer = optimizer
if global_step % training_args.save_steps == 0:
save_model(model.model, global_step, training_args.output_dir, training_args.max_checkpoints)
if training_args.eval_steps > 0 and global_step % training_args.eval_steps == 0:
device_map = suspend_optimizer(optimizer)
evaluate(model, tokenizer, eval_dataloader, global_step, log_writer, training_args.eval_prompt)
resume_optimizer(optimizer, device_map)
global_step += 1
progress_bar.update()
if global_step > 0:
if global_step % training_args.save_steps == 0:
save_model(model.model, global_step, training_args.output_dir, training_args.max_checkpoints)
if training_args.eval_steps > 0 and global_step % training_args.eval_steps == 0:
evaluate(model, tokenizer, eval_dataloader, global_step, log_writer, training_args.eval_prompt)
if training_args.flush_allocator:
gc.collect()
torch.cuda.empty_cache()
if training_args.do_eval and training_args.eval_steps == -1:
device_map = suspend_optimizer(optimizer)
evaluate(model, tokenizer, eval_dataloader, global_step, log_writer, training_args.eval_prompt)
resume_optimizer(optimizer, device_map)
del optimizer
# Evaluation
if training_args.do_eval:
evaluate(model, tokenizer, eval_dataloader, global_step, log_writer, training_args.eval_prompt)