Files
QRotaryTraining/convertinglinear.py
2024-03-09 10:03:37 +01:00

31 lines
1.4 KiB
Python

import torch
class ConvertingLinear(torch.nn.Linear):
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None, output_dtype=None):
super().__init__(in_features, out_features, bias, device, dtype)
self.output_dtype = output_dtype
def forward(self, input: torch.Tensor):
output_dtype = input.dtype if self.output_dtype is None else self.output_dtype
output_device = input.device
if input.device != self.weight.device:
input = input.to(self.weight.device)
if input.dtype != self.weight.dtype:
input = input.to(self.weight.dtype)
output = torch.nn.Linear.forward(self, input)
if torch.isnan(output).any() or self.weight.dtype != torch.float32:
breakpoint()
return output.to(output_device).to(output_dtype)
@classmethod
def fromLinear(cls, in_module: torch.nn.Linear):
new_module = torch.nn.utils.skip_init(cls, in_features=in_module.in_features,
out_features=in_module.out_features,
bias=in_module.bias is not None,
device=in_module.weight.device,
dtype=in_module.weight.dtype)
new_module.weight = in_module.weight
new_module.bias = in_module.bias
return new_module