Files
QRotaryTraining/arguments.py

94 lines
5.2 KiB
Python

from dataclasses import dataclass, field
from typing import Optional
@dataclass
class DataArguments:
eval_dataset_size: int = field(
default=512, metadata={"help": "Size of validation dataset."}
)
source_max_len: int = field(
default=512,
metadata={"help": "Maximum source sequence length. Sequences will be right padded (and possibly truncated)."},
)
train_on_source: Optional[bool] = field(
default=False,
metadata={"help": "Wether to train on the input in addition to the target text when in s2s mode."}
)
target_max_len: int = field(
default=256,
metadata={"help": "Maximum target sequence length. Sequences will be right padded (and possibly truncated)."},
)
dataset: str = field(
default=None,
metadata={"help": "A json file (s2s) or text file with the dataset to train on"}
)
block_size: int = field(
default=512,
metadata={"help": "size of the blocks the text is split into for training"},
)
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(
default="EleutherAI/pythia-12b"
)
tokenizer: Optional[str] = field(
default=None
)
trust_remote_code: Optional[bool] = field(
default=False,
metadata={"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."}
)
noresize: Optional[bool] = field(
default=False,
metadata={"help": "Never resize tokenizer embeddings"}
)
@dataclass
class TrainingArguments():
cache_dir: Optional[str] = field(
default=None
)
adam8bit: bool = field(
default=False,
metadata={"help": "Use 8-bit adam."}
)
report_to: str = field(
default='none',
metadata={"help": "To use wandb or something else for reporting."}
)
resume: bool = field(default=False, metadata={"help": 'Resume from previous checkpoint'})
ddp_find_unused_parameters: bool = field(default=True, metadata={"help": 'set if trainer should try to find unused parameters'})
output_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'})
per_device_train_batch_size: int = field(default=1, metadata={"help": 'The training batch size per GPU. Increase for better speed.'})
gradient_accumulation_steps: int = field(default=16, metadata={"help": 'How many gradients to accumulate before to perform an optimizer step'})
epochs: int = field(default=3, metadata={"help": 'How many epochs to train for'})
weight_decay: float = field(default=0.0, metadata={"help": 'The L2 weight decay rate of AdamW'})
learning_rate: float = field(default=0.0002, metadata={"help": 'The learnign rate'})
adam_epsilon: float = field(default=1e-7, metadata={"help": 'Adam epsilon'})
remove_unused_columns: bool = field(default=False, metadata={"help": 'Removed unused columns. Needed to make this codebase work.'})
max_grad_norm: float = field(default=0.3, metadata={"help": 'Gradient clipping max norm. This is tuned and works well for all models tested.'})
gradient_checkpointing: bool = field(default=True, metadata={"help": 'Use gradient checkpointing. You want to use this.'})
fp16: bool = field(default=False, metadata={"help": 'Train in 16 bit mixed precision'})
do_train: bool = field(default=True, metadata={"help": 'To train or not to train, that is the question?'})
do_eval: bool = field(default=False, metadata={"help": 'To eval or not to eval, that is the question?'})
lr_scheduler_type: str = field(default='constant',
metadata={"help": 'Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis'})
warmup_steps: float = field(default=0, metadata={"help": 'number of steps to do a warmup for'})
logging_steps: int = field(default=10, metadata={"help": 'The frequency of update steps after which to log the loss'})
group_by_length: bool = field(default=False,
metadata={"help": 'Group sequences into batches with same length. Saves memory and speeds up training considerably.'})
storage_fp16: bool = field(default=False, metadata={"help": 'Store untrained layers in 16bit'})
save_steps: int = field(default=250, metadata={"help": 'How often to save a model'})
max_checkpoints: int = field(default=0, metadata={"help": 'the maximum amount of checkpoints to save'})
save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'})
primary_device: str = field(default="cuda:0", metadata={"help": 'The primary device to use'})
secondary_device: str = field(default="cuda:0", metadata={"help": 'The secondary device to use'})
train_non_linear_layers: str = field(default=False, metadata={"help": 'train non linear layers'})
flush_allocator: bool = field(default=False, metadata={"help": 'flush torches allocator on eatch iteration'})
max_instant_params: int = field(default=0, metadata={"help": "Maximum amount of paramters to optimize per step in millions"})
churn_percent: int = field(default=0, metadata={"help": "The percentage of active parameters to replace when changeing active parameters"})