Files
QRotaryTraining/dyntrainmodel.py
2024-03-13 19:45:52 +01:00

191 lines
7.7 KiB
Python

from transformers import AutoModelForCausalLM
import torch
from utils import replace_module
from modules import ConvertingLinear, Linear
from random import randint
def find_all_linear_module_names(model) -> list[str]:
module_names = set()
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear) or isinstance(module, ConvertingLinear):
module_names.add(name)
if 'lm_head' in module_names: # needed for 16-bit
module_names.remove('lm_head')
return list(module_names)
def find_all_outher_module_names(model) -> list[str]:
module_names = set()
for name, module in model.named_modules():
if not (isinstance(module, torch.nn.Linear) or isinstance(module, ConvertingLinear)):
module_names.add(name)
return list(module_names)
class LinearGroup:
def __init__(self, model, group_names: list):
self.modules = list()
model_modules = dict(model.named_modules())
for name in group_names:
self.modules.append(model_modules[name])
assert isinstance(self.modules[0], ConvertingLinear)
assert isinstance(self.modules[-1], ConvertingLinear)
def inplaceTo(self, dtype: torch.dtype = None, device: torch.device = None, output_device: torch.device = None) -> None:
for module in self.modules:
module.inplaceTo(dtype, device)
self.modules[-1].setOutputDevice(output_device)
def setFrozen(self, frozen: bool) -> None:
for module in self.modules:
module.setFrozen(frozen)
def isFrozen(self) -> bool:
return self.modules[0].isFrozen()
def parameters(self) -> list[torch.nn.Parameter]:
params = list()
for module in self.modules:
params.extend(module.parameters())
return params
def paramCount(self) -> int:
return sum(p.numel() for p in self.parameters())
class DyntrainModel:
def __init__(self, model_name_or_path: str, cache_dir: str,
target_active_params: int, gradient_checkpointing: bool, trust_remote_code: bool = False):
self.model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
cache_dir=cache_dir,
torch_dtype=torch.float32,
trust_remote_code=trust_remote_code,
device_map=None,
)
self.linear_groups = list()
self.target_active_params = target_active_params
self._prepare()
self.reshuffleActive()
def _get_nonlinear_names(layer: torch.nn.Module):
names = list()
modules = dict(layer.named_modules())
for key in modules.keys():
if not isinstance(modules[key], torch.nn.Linear):
names.append(key)
return names
def _get_linear_group_names(layer: torch.nn.Module) -> list[list[str]]:
linear_groups = list()
list_counter = 0
in_sequence = False
modules = dict(layer.named_modules())
for key in modules.keys():
if isinstance(modules[key], torch.nn.Linear) and key != "lm_head":
if not in_sequence:
linear_groups.append(list())
in_sequence = True
linear_groups[list_counter].append(key)
elif in_sequence:
in_sequence = False
list_counter = list_counter + 1
return linear_groups
def _prepare(self) -> None:
modules = dict(self.model.named_modules())
linear_groups = DyntrainModel._get_linear_group_names(self.model)
for group in linear_groups:
replace_module(self.model, group[0], ConvertingLinear.fromLinear(modules[group[0]].to(torch.float16), output_dtype=torch.float16))
replace_module(self.model, group[-1], ConvertingLinear.fromLinear(modules[group[-1]].to(torch.float16), output_dtype=torch.float32))
if len(group) > 2:
for index in range(1, len(group) - 1):
replace_module(self.model, group[index], Linear.fromLinear(modules[group[index]].to(torch.float16)))
self.linear_groups.append(LinearGroup(self.model, group))
def dynamicParameters(self) -> list:
parameters = list()
for group in self.linear_groups:
parameters.extend(group.parameters())
return parameters
def staticParameters(self) -> list:
modules = dict(self.model.named_modules())
dynamic_param_ids = set([id(p) for p in self.dynamicParameters()])
parameters = list()
for key in modules.keys():
for param in modules[key].parameters():
if id(param) not in dynamic_param_ids:
parameters.append(param)
return parameters
def dynamicParameterCount(self) -> int:
return sum(p.numel() for p in self.dynamicParameters())
def staticParameterCount(self) -> int:
return sum(p.numel() for p in self.staticParameters())
def activeParameterCount(self) -> int:
total_params = self.dynamicParameters() + self.staticParameters()
return sum(p.numel() for p in total_params if total_params)
def reshuffleActive(self) -> None:
for group in self.linear_groups:
group.setFrozen(True)
indecies = list(range(0, len(self.linear_groups)))
params = self.staticParameterCount()
while params < self.target_active_params and len(indecies) > 0:
i = randint(0, len(indecies) - 1)
self.linear_groups[indecies[i]].setFrozen(False)
params += self.linear_groups[indecies[i]].paramCount()
indecies.pop(i)
for group in self.linear_groups:
if group.isFrozen():
group.inplaceTo(dtype=torch.float16)
else:
group.inplaceTo(dtype=torch.float32)
print(group.modules[0].weight.dtype)
def toDevices(self, primary_device: torch.device, secondary_devices: list[torch.device]) -> None:
modules = dict(self.model.named_modules())
total_memory = sum(torch.cuda.get_device_properties(d).total_memory for d in secondary_devices)
total_memory += torch.cuda.get_device_properties(primary_device).total_memory * 0.8
static_param_count = self.staticParameterCount()
total_parameter_count = static_param_count + self.dynamicParameterCount()
params_per_byte = total_parameter_count / float(total_memory)
print(f"{1/params_per_byte} bytes available per parameter")
breakpoint()
for key in DyntrainModel._get_nonlinear_names(self.model):
replace_module(self.model, key, modules[key].to(primary_device))
breakpoint()
group_index = 0
params_for_primary = torch.cuda.get_device_properties(primary_device).total_memory * params_per_byte * 0.8 - static_param_count
primary_params = static_param_count
while params_for_primary > primary_params and group_index < len(self.linear_groups):
self.linear_groups[group_index].inplaceTo(device=primary_device)
primary_params += self.linear_groups[group_index].paramCount()
group_index += 1
for device in secondary_devices[:-1]:
params_for_device = torch.cuda.get_device_properties(primary_device).total_memory * params_per_byte
params = 0
while params_for_device > params and group_index < len(self.linear_groups):
self.linear_groups[group_index].inplaceTo(device=device, output_device=primary_device)
params += self.linear_groups[group_index].paramCount()
group_index += 1
while group_index < len(self.linear_groups):
self.linear_groups[group_index].inplaceTo(device=secondary_devices[-1], output_device=primary_device)