Files
QRotaryTraining/train_dynamic.py
2024-05-07 15:27:59 +02:00

231 lines
11 KiB
Python

import transformers
from transformers import get_scheduler
import torch
from torch.utils import tensorboard
import os
import shutil
import math
from tqdm.auto import tqdm
import gc
from arguments import DataArguments, ModelArguments, TrainingArguments
from datamodules import create_data_module_s2s, create_data_module, create_data_module_hub
from tokenizer import get_tokenizer
from dyntrainmodel import DyntrainModel
def save_model(model, global_step: int, output_dir: str, max_checkpoints: int = 0):
output_chkpt_dir = f"step_{global_step}" if global_step >= 0 else ""
output_dir = os.path.join(output_dir, output_chkpt_dir)
model.save_pretrained(output_dir)
if max_checkpoints > 0:
files = [f for f in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, f)) and f.startswith("step_")]
def extract_step(filename):
tokens = filename.split('_')
return int(tokens[1])
if len(files) > max_checkpoints:
min_step = min(map(extract_step, files))
delete_checkpoit_dir = os.path.join(output_dir, f"step_{min_step}")
print(f"there are more than {max_checkpoints} checkpints saved, deleting {delete_checkpoit_dir}")
shutil.rmtree(delete_checkpoit_dir)
def get_optimizer(dyamic_parameters: list[torch.nn.Parameter], static_parameters: list[torch.nn.Parameter] | None, lr: float, static_lr: float,
weight_decay: float, eps: float, adam8bit: bool):
parameters = list[dict]()
parameters.extend({'params': p} for p in dyamic_parameters if p.requires_grad)
param_ids = set([id(p['params']) for p in parameters])
if static_parameters is not None:
for param in static_parameters:
if param.requires_grad and id(param) not in param_ids:
parameters.append({'params': param, 'lr': static_lr})
param_ids.add(id(param))
if not adam8bit:
optimizer = torch.optim.AdamW(parameters, weight_decay=weight_decay, lr=lr, eps=training_args.adam_epsilon)
else:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("To use 8-bit Adam, bitsandbytes must be available")
optimizer = bnb.optim.AdamW8bit(parameters, weight_decay=weight_decay, lr=lr, eps=eps)
return optimizer
def evaluate(model: DyntrainModel, tokenizer,
dataloader: torch.utils.data.DataLoader, globalstep: int,
log_writer: tensorboard.SummaryWriter, eval_prompt: str | None = None):
print("*** Eval ***")
loss = torch.zeros((1), device="cuda:0")
model.model.eval()
for batch in dataloader:
for key in batch:
batch[key] = batch[key].to("cuda:0")
outputs = model.model(**batch)
loss += outputs.loss
loss = loss / len(dataloader)
log_writer.add_scalar("Loss/Eval", loss, globalstep)
print(f"Eval Loss {loss.item()}")
return loss.item()
if eval_prompt is not None:
input_ids = tokenizer(eval_prompt, return_tensors="pt").input_ids.to(model.devices[0])
attention_mask = torch.ones(input_ids.shape, device=model.devices[0], requires_grad=False)
outputs = model.generate(input_ids, attention_mask=attention_mask, do_sample=True, temperature=1, max_new_tokens=100)
response_decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(f"Eval generation: {response_decoded}")
log_writer.add_text("Text/Eval", response_decoded, globalstep)
def train(model_args: ModelArguments, data_args: DataArguments, training_args: TrainingArguments):
log_writer = tensorboard.SummaryWriter()
model = DyntrainModel(model_args.model_name_or_path, training_args.cache_dir, target_active_params=int(training_args.max_instant_params * 1e6),
reshuffle_fraction=training_args.churn_percent / 100.0, gradient_checkpointing=True, trust_remote_code=True,
quantize=model_args.quantize)
devices = list(torch.device(i) for i in range(0, torch.cuda.device_count()))
model.toDevices(devices)
model.reshuffleActive()
model.balanceActive()
paramter_count = sum(p.numel() for p in model.model.parameters())
active_paramter_count = sum(p.numel() for p in model.model.parameters() if p.requires_grad)
static_parameter_count = model.staticParameterCount() if training_args.train_non_linear_layers else 0
print(f"Training model with {paramter_count / 1e6}m parameters and {active_paramter_count / 1e6}m"
f"instantanous active paramters of which {static_parameter_count} are static")
tokenizer = get_tokenizer(model.model, training_args.cache_dir, model_args)
if data_args.dataset.endswith("json"):
print("Loading dataset in s2s mode")
data_module = create_data_module_s2s(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
elif data_args.data_from_hub:
data_module = create_data_module_hub(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
else:
print("Loading dataset in txt mode")
data_module = create_data_module(tokenizer, data_args, training_args.do_train, training_args.do_eval, False)
dataset = {k: v for k, v in data_module.items() if k != 'predict_dataset'}
train_dataloader = torch.utils.data.DataLoader(
dataset['train_dataset'],
shuffle=True,
collate_fn=dataset['data_collator'],
batch_size=training_args.per_device_train_batch_size
) if dataset['train_dataset'] is not None else None
if training_args.do_eval:
eval_dataloader = torch.utils.data.DataLoader(
dataset['eval_dataset'],
shuffle=True,
collate_fn=dataset['data_collator'],
batch_size=training_args.per_device_train_batch_size
)
dynamic_param_ratio = (model.staticParameterCount() + model.dynamicParameterCount()) / model.dynamicParameterCount()
steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps) if train_dataloader is not None else 1
total_steps = steps_per_epoch * training_args.epochs
optimizer = get_optimizer(model.dynamicParameters(),
model.staticParameters() if training_args.train_non_linear_layers else None,
training_args.learning_rate,
training_args.learning_rate / dynamic_param_ratio,
training_args.weight_decay,
training_args.adam_epsilon,
training_args.adam8bit)
lr_scheduler = get_scheduler(
name=training_args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=training_args.warmup_steps,
num_training_steps=total_steps
)
if training_args.do_train:
progress_bar = tqdm(range(total_steps))
global_step = 0
model.model.train()
for epoch in range(0, training_args.epochs):
model.model.train()
print("*** Train ***")
print(f'Vram used for model before training starts: {torch.cuda.memory_allocated()/(1024.0*1024.0)}')
for step, batch in enumerate(train_dataloader):
for key in batch:
batch[key] = batch[key].to("cuda:0")
outputs = model.model(**batch)
loss = outputs.loss / training_args.gradient_accumulation_steps
loss.backward()
if (step + 1) % training_args.gradient_accumulation_steps == 0 or step + 1 == len(train_dataloader):
if global_step % training_args.logging_steps == 0:
log_writer.add_scalar("Loss/train", loss, global_step)
optimizer.step()
lr_scheduler.step()
model.model.zero_grad()
if global_step % 5 == 0:
print(f"Train Loss {loss.item()}")
if global_step % training_args.reshufle_steps == 0 and training_args.max_instant_params != 0:
print("Reshuffleing")
lr_scheduler.optimizer = None
del optimizer
# distance, error = model.getDistanceAndErrorSample()
# log_writer.add_histogram("Distances/Train", distance, max_bins=50)
# log_writer.add_histogram("Errors/Train", error, max_bins=50)
model.reshuffleActive()
model.balanceActive()
log_writer.add_scalar("Parameters/train", model.activeParameterCount(), global_step)
optimizer = get_optimizer(model.dynamicParameters(),
model.staticParameters() if training_args.train_non_linear_layers else None,
training_args.learning_rate,
training_args.learning_rate / dynamic_param_ratio,
training_args.weight_decay,
training_args.adam_epsilon,
training_args.adam8bit)
lr_scheduler.optimizer = optimizer
global_step += 1
progress_bar.update()
if global_step > 0:
if global_step % training_args.save_steps == 0:
save_model(model.model, global_step, training_args.output_dir, training_args.max_checkpoints)
if training_args.eval_steps > 0 and global_step % training_args.eval_steps == 0:
evaluate(model, tokenizer, eval_dataloader, global_step, log_writer, training_args.eval_prompt)
if training_args.flush_allocator:
gc.collect()
torch.cuda.empty_cache()
if training_args.do_eval and training_args.eval_steps == -1:
evaluate(model, tokenizer, eval_dataloader, global_step, log_writer, training_args.eval_prompt)
# Evaluation
if training_args.do_eval:
evaluate(model, tokenizer, eval_dataloader, global_step, log_writer, training_args.eval_prompt)
save_model(model.model, global_step, training_args.output_dir)
return
if __name__ == "__main__":
hfparser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args, extra_args = hfparser.parse_args_into_dataclasses(return_remaining_strings=True)
print("Model Arguments:")
print(model_args)
print("\nData Arguments:")
print(data_args)
print("\nTraining Arguments:")
print(training_args)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
train(model_args, data_args, training_args)