Add person dataset assembler, restructure repo

This commit is contained in:
2024-04-05 12:46:06 +02:00
parent 81475815fb
commit 03e2b3119a
25 changed files with 172 additions and 15 deletions

356
SmartCrop/seamcarving.cpp Normal file
View File

@ -0,0 +1,356 @@
#include "seamcarving.h"
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
#include <filesystem>
#include <cfloat>
#include <vector>
#include "log.h"
bool SeamCarving::strechImage(cv::Mat& image, int seams, bool grow, std::vector<std::vector<int>>* seamsVect)
{
cv::Mat newFrame = image.clone();
assert(!newFrame.empty());
std::vector<std::vector<int>> vecSeams;
for(int i = 0; i < seams; i++)
{
//Gradient Magnitude for intensity of image.
cv::Mat gradientMagnitude = computeGradientMagnitude(newFrame);
//Use DP to create the real energy map that is used for path calculation.
// Strictly using vertical paths for testing simplicity.
cv::Mat pathIntensityMat = computePathIntensityMat(gradientMagnitude);
if(pathIntensityMat.rows == 0 && pathIntensityMat.cols == 0)
return false;
std::vector<int> seam = getLeastImportantPath(pathIntensityMat);
vecSeams.push_back(seam);
if(seamsVect)
seamsVect->push_back(seam);
newFrame = removeLeastImportantPath(newFrame, seam);
if(newFrame.rows == 0 || newFrame.cols == 0)
return false;
}
if (grow)
{
cv::Mat growMat = image.clone();
for(size_t i = 0; i < vecSeams.size(); i++)
{
growMat = addLeastImportantPath(growMat,vecSeams[i]);
}
image = growMat;
}
else
{
image = newFrame;
}
return true;
}
bool SeamCarving::strechImageVert(cv::Mat& image, int seams, bool grow, std::vector<std::vector<int>>* seamsVect)
{
cv::transpose(image, image);
bool ret = strechImage(image, seams, grow, seamsVect);
cv::transpose(image, image);
return ret;
}
bool SeamCarving::strechImageWithSeamsImage(cv::Mat& image, cv::Mat& seamsImage, int seams, bool grow)
{
std::vector<std::vector<int>> seamsVect;
seamsImage = image.clone();
bool ret = SeamCarving::strechImage(image, seams, grow, &seamsVect);
if(!ret)
return false;
for(size_t i = 0; i < seamsVect.size(); ++i)
seamsImage = drawSeam(seamsImage, seamsVect[i]);
return true;
}
cv::Mat SeamCarving::GetEnergyImg(const cv::Mat &img)
{
// find partial derivative of x-axis and y-axis seperately
// sum up the partial derivates
float pd[] = {1, 2, 1, 0, 0, 0, -1, -2 - 1};
cv::Mat xFilter(3, 3, CV_32FC1, pd);
cv::Mat yFilter = xFilter.t();
cv::Mat grayImg;
cv::cvtColor(img, grayImg, cv::COLOR_RGBA2GRAY);
cv::Mat dxImg;
cv::Mat dyImg;
cv::filter2D(grayImg, dxImg, 0, xFilter);
cv::filter2D(grayImg, dyImg, 0, yFilter);
//cv::Mat zeroMat = cv::Mat::zeros(dxImg.rows, dxImg.cols, dxImg.type());
//cv::Mat absDxImg;
//cv::Mat absDyImg;
//cv::absdiff(dxImg, zeroMat, absDxImg);
//cv::absdiff(dyImg, zeroMat, absDyImg);
cv::Mat absDxImg = cv::abs(dxImg);
cv::Mat absDyImg = cv::abs(dyImg);
cv::Mat energyImg;
cv::add(absDxImg, absDyImg, energyImg);
return energyImg;
}
cv::Mat SeamCarving::computeGradientMagnitude(const cv::Mat &frame)
{
cv::Mat grayScale;
cv::cvtColor(frame, grayScale, cv::COLOR_RGBA2GRAY);
cv::Mat drv = cv::Mat(grayScale.size(), CV_16SC1);
cv::Mat drv32f = cv::Mat(grayScale.size(), CV_32FC1);
cv::Mat mag = cv::Mat::zeros(grayScale.size(), CV_32FC1);
Sobel(grayScale, drv, CV_16SC1, 1, 0);
drv.convertTo(drv32f, CV_32FC1);
cv::accumulateSquare(drv32f, mag);
Sobel(grayScale, drv, CV_16SC1, 0, 1);
drv.convertTo(drv32f, CV_32FC1);
cv::accumulateSquare(drv32f, mag);
cv::sqrt(mag, mag);
return mag;
}
float SeamCarving::intensity(float currIndex, int start, int end)
{
if(start < 0 || start >= end)
{
return FLT_MAX;
}
else
{
return currIndex;
}
}
cv::Mat SeamCarving::computePathIntensityMat(const cv::Mat &rawEnergyMap)
{
cv::Mat pathIntensityMap = cv::Mat(rawEnergyMap.size(), CV_32FC1);
if(rawEnergyMap.total() == 0 || pathIntensityMap.total() == 0)
{
return cv::Mat();
}
//First row of intensity paths is the same as the energy map
rawEnergyMap.row(0).copyTo(pathIntensityMap.row(0));
float max = 0;
//The rest of them use the DP calculation using the minimum of the 3 pixels above them + their own intensity.
for(int row = 1; row < pathIntensityMap.rows; row++)
{
for(int col = 0; col < pathIntensityMap.cols; col++)
{
//The initial intensity of the pixel is its raw intensity
float pixelIntensity = rawEnergyMap.at<float>(row, col);
//The minimum intensity from the current path of the 3 pixels above it is added to its intensity.
float p1 = intensity(pathIntensityMap.at<float>(row-1, col-1), col - 1, pathIntensityMap.cols);
float p2 = intensity(pathIntensityMap.at<float>(row-1, col), col, pathIntensityMap.cols);
float p3 = intensity(pathIntensityMap.at<float>(row-1, col+1), col + 1, pathIntensityMap.cols);
float minIntensity = std::min(p1, p2);
minIntensity = std::min(minIntensity, p3);
pixelIntensity += minIntensity;
max = std::max(max, pixelIntensity);
pathIntensityMap.at<float>(row, col) = pixelIntensity;
}
}
return pathIntensityMap;
}
std::vector<int> SeamCarving::getLeastImportantPath(const cv::Mat &importanceMap)
{
if(importanceMap.total() == 0)
{
return std::vector<int>();
}
//Find the beginning of the least important path. Trying an averaging approach because absolute min wasn't very reliable.
float minImportance = importanceMap.at<float>(importanceMap.rows - 1, 0);
int minCol = 0;
for (int col = 1; col < importanceMap.cols; col++)
{
float currPixel =importanceMap.at<float>(importanceMap.rows - 1, col);
if(currPixel < minImportance)
{
minCol = col;
minImportance = currPixel;
}
}
std::vector<int> leastEnergySeam(importanceMap.rows);
leastEnergySeam[importanceMap.rows-1] = minCol;
for(int row = importanceMap.rows - 2; row >= 0; row--)
{
float p1 = intensity(importanceMap.at<float>(row, minCol-1), minCol - 1, importanceMap.cols);
float p2 = intensity(importanceMap.at<float>(row, minCol), minCol, importanceMap.cols);
float p3 = intensity(importanceMap.at<float>(row, minCol+1), minCol + 1, importanceMap.cols);
//Adjust the min column for path following
if(p1 < p2 && p1 < p3)
{
minCol -= 1;
}
else if(p3 < p1 && p3 < p2)
{
minCol += 1;
}
leastEnergySeam[row] = minCol;
}
return leastEnergySeam;
}
cv::Mat SeamCarving::removeLeastImportantPath(const cv::Mat &original, const std::vector<int> &seam)
{
cv::Size orgSize = original.size();
// new mat needs to shrink by one collumn
cv::Size size = cv::Size(orgSize.width-1, orgSize.height);
cv::Mat newMat = cv::Mat(size, original.type());
for(size_t row = 0; row < seam.size(); row++)
{
removePixel(original, newMat, row, seam[row]);
}
return newMat;
}
void SeamCarving::removePixel(const cv::Mat &original, cv::Mat &outputMat, int row, int minCol)
{
int width = original.cols;
int channels = original.channels();
int originRowStart = row * channels * width;
int newRowStart = row * channels * (width - 1);
int firstNum = minCol * channels;
unsigned char *rawOrig = original.data;
unsigned char *rawOutput = outputMat.data;
//std::cout << "originRowStart: " << originRowStart << std::endl;
//std::cout << "newRowStart: " << newRowStart << std::endl;
//std::cout << "firstNum: " << firstNum << std::endl;
memcpy(rawOutput + newRowStart, rawOrig + originRowStart, firstNum);
int originRowMid = originRowStart + (minCol + 1) * channels;
int newRowMid = newRowStart + minCol * channels;
int secondNum = (width - 1) * channels - firstNum;
//std::cout << "originRowMid: " << originRowMid << std::endl;
//std::cout << "newRowMid: " << newRowMid << std::endl;
//std::cout << "secondNum: " << secondNum << std::endl;
memcpy(rawOutput + newRowMid, rawOrig + originRowMid, secondNum);
int leftPixel = minCol - 1;
int rightPixel = minCol + 1;
int byte1 = rawOrig[originRowStart + minCol * channels];
int byte2 = rawOrig[originRowStart + minCol * channels + 1];
int byte3 = rawOrig[originRowStart + minCol * channels + 2];
if (rightPixel < width)
{
int byte1R = rawOrig[originRowStart + rightPixel * channels];
int byte2R = rawOrig[originRowStart + rightPixel * channels + 1];
int byte3R = rawOrig[originRowStart + rightPixel * channels + 2];
rawOutput[newRowStart + minCol * channels] = (unsigned char)((byte1 + byte1R) / 2);
rawOutput[newRowStart + minCol * channels + 1] = (unsigned char)((byte2 + byte2R) / 2);
rawOutput[newRowStart + minCol * channels + 2] = (unsigned char)((byte3 + byte3R) / 2);
}
if(leftPixel >= 0)
{
int byte1L = rawOrig[originRowStart + leftPixel*channels];
int byte2L = rawOrig[originRowStart + leftPixel*channels+1];
int byte3L = rawOrig[originRowStart + leftPixel*channels+2];
rawOutput[newRowStart + leftPixel*channels] = (unsigned char) ((byte1 + byte1L)/2);
rawOutput[newRowStart + leftPixel*channels+1] = (unsigned char) ((byte2 + byte2L)/2);
rawOutput[newRowStart + leftPixel*channels+2] = (unsigned char) ((byte3 + byte3L)/2);
}
}
cv::Mat SeamCarving::addLeastImportantPath(const cv::Mat &original, const std::vector<int> &seam)
{
cv::Size orgSize = original.size();
// new mat needs to grow by one column
cv::Size size = cv::Size(orgSize.width+1, orgSize.height);
cv::Mat newMat = cv::Mat(size, original.type());
for(size_t row = 0; row < seam.size(); row++)
{
//std::cout << "row: " << row << ", col: " << seam[row] << std::endl;
addPixel(original, newMat, row, seam[row]);
}
return newMat;
}
void SeamCarving::addPixel(const cv::Mat &original, cv::Mat &outputMat, int row, int minCol)
{
int width = original.cols;
int channels = original.channels();
int originRowStart = row * channels * width;
int newRowStart = row * channels * (width + 1);
int firstNum = (minCol + 1) * channels;
unsigned char *rawOrig = original.data;
unsigned char *rawOutput = outputMat.data;
memcpy(rawOutput + newRowStart, rawOrig + originRowStart, firstNum);
memcpy(rawOutput + newRowStart + firstNum, rawOrig + originRowStart + firstNum, channels);
int originRowMid = originRowStart + ((minCol + 1) * channels);
int newRowMid = newRowStart + ((minCol + 2) * channels);
int secondNum = (width * channels) - firstNum;
memcpy(rawOutput + newRowMid, rawOrig + originRowMid, secondNum);
int leftPixel = minCol - 1;
int rightPixel = minCol + 1;
int byte1 = rawOrig[originRowStart + minCol * channels];
int byte2 = rawOrig[originRowStart + minCol * channels + 1];
int byte3 = rawOrig[originRowStart + minCol * channels + 2];
if (rightPixel < width)
{
int byte1R = rawOrig[originRowStart + rightPixel * channels];
int byte2R = rawOrig[originRowStart + rightPixel * channels + 1];
int byte3R = rawOrig[originRowStart + rightPixel * channels + 2];
rawOutput[newRowStart + minCol * channels] = (unsigned char)((byte1 + byte1R) / 2);
rawOutput[newRowStart + minCol * channels + 1] = (unsigned char)((byte2 + byte2R) / 2);
rawOutput[newRowStart + minCol * channels + 2] = (unsigned char)((byte3 + byte3R) / 2);
}
if(leftPixel >= 0)
{
int byte1L = rawOrig[originRowStart + leftPixel*channels];
int byte2L = rawOrig[originRowStart + leftPixel*channels+1];
int byte3L = rawOrig[originRowStart + leftPixel*channels+2];
rawOutput[newRowStart + leftPixel*channels] = (unsigned char) ((byte1 + byte1L)/2);
rawOutput[newRowStart + leftPixel*channels+1] = (unsigned char) ((byte2 + byte2L)/2);
rawOutput[newRowStart + leftPixel*channels+2] = (unsigned char) ((byte3 + byte3L)/2);
}
}
cv::Mat SeamCarving::drawSeam(const cv::Mat &frame, const std::vector<int> &seam)
{
cv::Mat retMat = frame.clone();
for(int row = 0; row < frame.rows; row++)
{
for(int col = 0; col < frame.cols; col++)
{
retMat.at<cv::Vec3b>(row, seam[row])[0] = 0;
retMat.at<cv::Vec3b>(row, seam[row])[1] = 255;
retMat.at<cv::Vec3b>(row, seam[row])[2] = 0;
}
}
return retMat;
}