Add person dataset assembler, restructure repo
This commit is contained in:
439
SmartCrop/main.cpp
Normal file
439
SmartCrop/main.cpp
Normal file
@ -0,0 +1,439 @@
|
||||
#include <filesystem>
|
||||
#include <iostream>
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/core/types.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <algorithm>
|
||||
#include <execution>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
#include "yolo.h"
|
||||
#include "log.h"
|
||||
#include "options.h"
|
||||
#include "utils.h"
|
||||
#include "intelligentroi.h"
|
||||
#include "seamcarving.h"
|
||||
#include "facerecognizer.h"
|
||||
|
||||
const Yolo::Detection* pointInDetectionHoriz(int x, const std::vector<Yolo::Detection>& detections, const Yolo::Detection* ignore = nullptr)
|
||||
{
|
||||
const Yolo::Detection* inDetection = nullptr;
|
||||
for(const Yolo::Detection& detection : detections)
|
||||
{
|
||||
if(ignore && ignore == &detection)
|
||||
continue;
|
||||
|
||||
if(detection.box.x <= x && detection.box.x+detection.box.width >= x)
|
||||
{
|
||||
if(!inDetection || detection.box.br().x > inDetection->box.br().x)
|
||||
inDetection = &detection;
|
||||
}
|
||||
}
|
||||
return inDetection;
|
||||
}
|
||||
|
||||
bool findRegionEndpointHoriz(int& x, const std::vector<Yolo::Detection>& detections, int imgSizeX)
|
||||
{
|
||||
const Yolo::Detection* inDetection = pointInDetectionHoriz(x, detections);
|
||||
|
||||
Log(Log::DEBUG, false)<<__func__<<" point "<<x;
|
||||
|
||||
if(!inDetection)
|
||||
{
|
||||
const Yolo::Detection* closest = nullptr;
|
||||
for(const Yolo::Detection& detection : detections)
|
||||
{
|
||||
if(detection.box.x > x)
|
||||
{
|
||||
if(closest == nullptr || detection.box.x-x > closest->box.x-x)
|
||||
closest = &detection;
|
||||
}
|
||||
}
|
||||
if(closest)
|
||||
x = closest->box.x;
|
||||
else
|
||||
x = imgSizeX;
|
||||
|
||||
Log(Log::DEBUG)<<" is not in any box and will be moved to "<<x<<" where the closest box ("<<(closest ? closest->className : "null")<<") is";
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
x = inDetection->box.br().x;
|
||||
Log(Log::DEBUG, false)<<" is in a box and will be moved to its end "<<x<<" where ";
|
||||
const Yolo::Detection* candidateDetection = pointInDetectionHoriz(x, detections, inDetection);
|
||||
if(candidateDetection && candidateDetection->box.br().x > x)
|
||||
{
|
||||
Log(Log::DEBUG)<<"it is again in a box";
|
||||
return findRegionEndpointHoriz(x, detections, imgSizeX);
|
||||
}
|
||||
else
|
||||
{
|
||||
Log(Log::DEBUG)<<"it is not in a box";
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<cv::Mat, bool>> cutImageIntoHorzRegions(cv::Mat& image, const std::vector<Yolo::Detection>& detections)
|
||||
{
|
||||
std::vector<std::pair<cv::Mat, bool>> out;
|
||||
|
||||
std::cout<<__func__<<' '<<image.cols<<'x'<<image.rows<<std::endl;
|
||||
|
||||
for(int x = 0; x < image.cols; ++x)
|
||||
{
|
||||
int start = x;
|
||||
bool frozen = findRegionEndpointHoriz(x, detections, image.cols);
|
||||
|
||||
int width = x-start;
|
||||
if(x < image.cols)
|
||||
++width;
|
||||
cv::Rect rect(start, 0, width, image.rows);
|
||||
Log(Log::DEBUG)<<__func__<<" region\t"<<rect;
|
||||
cv::Mat slice = image(rect);
|
||||
out.push_back({slice, frozen});
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
cv::Mat assembleFromSlicesHoriz(const std::vector<std::pair<cv::Mat, bool>>& slices)
|
||||
{
|
||||
assert(!slices.empty());
|
||||
|
||||
int cols = 0;
|
||||
for(const std::pair<cv::Mat, bool>& slice : slices)
|
||||
cols += slice.first.cols;
|
||||
|
||||
|
||||
cv::Mat image(cols, slices[0].first.rows, slices[0].first.type());
|
||||
Log(Log::DEBUG)<<__func__<<' '<<image.size()<<' '<<cols<<' '<<slices[0].first.rows;
|
||||
|
||||
int col = 0;
|
||||
for(const std::pair<cv::Mat, bool>& slice : slices)
|
||||
{
|
||||
cv::Rect rect(col, 0, slice.first.cols, slice.first.rows);
|
||||
Log(Log::DEBUG)<<__func__<<' '<<rect;
|
||||
slice.first.copyTo(image(rect));
|
||||
col += slice.first.cols-1;
|
||||
}
|
||||
|
||||
return image;
|
||||
}
|
||||
|
||||
void transposeRect(cv::Rect& rect)
|
||||
{
|
||||
int x = rect.x;
|
||||
rect.x = rect.y;
|
||||
rect.y = x;
|
||||
|
||||
int width = rect.width;
|
||||
rect.width = rect.height;
|
||||
rect.height = width;
|
||||
}
|
||||
|
||||
bool seamCarveResize(cv::Mat& image, std::vector<Yolo::Detection> detections, double targetAspectRatio = 1.0)
|
||||
{
|
||||
detections.erase(std::remove_if(detections.begin(), detections.end(), [](const Yolo::Detection& detection){return detection.priority < 3;}), detections.end());
|
||||
|
||||
double aspectRatio = image.cols/static_cast<double>(image.rows);
|
||||
|
||||
Log(Log::DEBUG)<<"Image size "<<image.size()<<" aspect ratio "<<aspectRatio<<" target aspect ratio "<<targetAspectRatio;
|
||||
|
||||
bool vertical = false;
|
||||
if(aspectRatio > targetAspectRatio)
|
||||
vertical = true;
|
||||
|
||||
int requiredLines = 0;
|
||||
if(!vertical)
|
||||
requiredLines = image.rows*targetAspectRatio - image.cols;
|
||||
else
|
||||
requiredLines = image.cols/targetAspectRatio - image.rows;
|
||||
|
||||
Log(Log::DEBUG)<<__func__<<' '<<requiredLines<<" lines are required in "<<(vertical ? "vertical" : "horizontal")<<" direction";
|
||||
|
||||
if(vertical)
|
||||
{
|
||||
cv::transpose(image, image);
|
||||
for(Yolo::Detection& detection : detections)
|
||||
transposeRect(detection.box);
|
||||
}
|
||||
|
||||
std::vector<std::pair<cv::Mat, bool>> slices = cutImageIntoHorzRegions(image, detections);
|
||||
Log(Log::DEBUG)<<"Image has "<<slices.size()<<" slices:";
|
||||
int totalResizableSize = 0;
|
||||
for(const std::pair<cv::Mat, bool>& slice : slices)
|
||||
{
|
||||
Log(Log::DEBUG)<<"a "<<(slice.second ? "frozen" : "unfrozen")<<" slice of size "<<slice.first.cols;
|
||||
if(!slice.second)
|
||||
totalResizableSize += slice.first.cols;
|
||||
}
|
||||
|
||||
if(totalResizableSize < requiredLines+1)
|
||||
{
|
||||
Log(Log::WARN)<<"Unable to seam carve as there are only "<<totalResizableSize<<" unfrozen cols";
|
||||
if(vertical)
|
||||
cv::transpose(image, image);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<int> seamsForSlice(slices.size(), 0);
|
||||
for(size_t i = 0; i < slices.size(); ++i)
|
||||
{
|
||||
if(!slices[i].second)
|
||||
seamsForSlice[i] = (static_cast<double>(slices[i].first.cols)/totalResizableSize)*requiredLines;
|
||||
}
|
||||
|
||||
int residual = requiredLines - std::accumulate(seamsForSlice.begin(), seamsForSlice.end(), decltype(seamsForSlice)::value_type(0));;
|
||||
for(ssize_t i = slices.size()-1; i >= 0; --i)
|
||||
{
|
||||
if(!slices[i].second)
|
||||
{
|
||||
seamsForSlice[i] += residual;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for(size_t i = 0; i < slices.size(); ++i)
|
||||
{
|
||||
if(seamsForSlice[i] != 0)
|
||||
{
|
||||
bool ret = SeamCarving::strechImage(slices[i].first, seamsForSlice[i], true);
|
||||
if(!ret)
|
||||
{
|
||||
if(vertical)
|
||||
transpose(image, image);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
image = assembleFromSlicesHoriz(slices);
|
||||
|
||||
if(vertical)
|
||||
cv::transpose(image, image);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void drawDebugInfo(cv::Mat &image, const cv::Rect& rect, const std::vector<Yolo::Detection>& detections)
|
||||
{
|
||||
for(const Yolo::Detection& detection : detections)
|
||||
{
|
||||
cv::rectangle(image, detection.box, detection.color, 3);
|
||||
std::string label = detection.className + ' ' + std::to_string(detection.confidence).substr(0, 4) + ' ' + std::to_string(detection.priority);
|
||||
cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_DUPLEX, 1, 1, 0);
|
||||
cv::Rect textBox(detection.box.x, detection.box.y - 40, labelSize.width + 10, labelSize.height + 20);
|
||||
cv::rectangle(image, textBox, detection.color, cv::FILLED);
|
||||
cv::putText(image, label, cv::Point(detection.box.x + 5, detection.box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 1, 0);
|
||||
}
|
||||
|
||||
cv::rectangle(image, rect, cv::Scalar(0, 0, 255), 8);
|
||||
}
|
||||
|
||||
static void reduceSize(cv::Mat& image, const cv::Size& targetSize)
|
||||
{
|
||||
int longTargetSize = std::max(targetSize.width, targetSize.height)*2;
|
||||
if(std::max(image.cols, image.rows) > longTargetSize)
|
||||
{
|
||||
if(image.cols > image.rows)
|
||||
{
|
||||
double ratio = static_cast<double>(longTargetSize)/image.cols;
|
||||
cv::resize(image, image, {longTargetSize, static_cast<int>(image.rows*ratio)}, 0, 0, cv::INTER_CUBIC);
|
||||
}
|
||||
else
|
||||
{
|
||||
double ratio = static_cast<double>(longTargetSize)/image.rows;
|
||||
cv::resize(image, image, {static_cast<int>(image.cols*ratio), longTargetSize}, 0, 0, cv::INTER_CUBIC);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void pipeline(const std::filesystem::path& path, const Config& config, Yolo& yolo, FaceRecognizer* recognizer,
|
||||
std::mutex& reconizerMutex, const std::filesystem::path& debugOutputPath)
|
||||
{
|
||||
InteligentRoi intRoi(yolo);
|
||||
cv::Mat image = cv::imread(path);
|
||||
if(!image.data)
|
||||
{
|
||||
Log(Log::WARN)<<"could not load image "<<path<<" skipping";
|
||||
return;
|
||||
}
|
||||
|
||||
reduceSize(image, config.targetSize);
|
||||
|
||||
std::vector<Yolo::Detection> detections = yolo.runInference(image);
|
||||
|
||||
Log(Log::DEBUG)<<"Got "<<detections.size()<<" detections for "<<path;
|
||||
for(Yolo::Detection& detection : detections)
|
||||
{
|
||||
bool hasmatch = false;
|
||||
if(recognizer && detection.className == "person")
|
||||
{
|
||||
cv::Mat person = image(detection.box);
|
||||
reconizerMutex.lock();
|
||||
std::pair<int, double> match = recognizer->isMatch(person);
|
||||
reconizerMutex.unlock();
|
||||
if(match.first >= 0)
|
||||
{
|
||||
detection.priority += 10;
|
||||
hasmatch = true;
|
||||
}
|
||||
}
|
||||
Log(Log::DEBUG)<<detection.class_id<<": "<<detection.className<<" at "<<detection.box<<" with prio "<<detection.priority<<(hasmatch ? " has match" : "");
|
||||
}
|
||||
|
||||
cv::Rect crop;
|
||||
bool incompleate = intRoi.getCropRectangle(crop, detections, image.size());
|
||||
|
||||
if(config.seamCarving && incompleate)
|
||||
{
|
||||
bool ret = seamCarveResize(image, detections, config.targetSize.aspectRatio());
|
||||
if(ret && image.size().aspectRatio() != config.targetSize.aspectRatio())
|
||||
{
|
||||
detections = yolo.runInference(image);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat croppedImage;
|
||||
|
||||
if(image.size().aspectRatio() != config.targetSize.aspectRatio() && incompleate)
|
||||
{
|
||||
intRoi.getCropRectangle(crop, detections, image.size());
|
||||
|
||||
if(config.debug)
|
||||
{
|
||||
cv::Mat debugImage = image.clone();
|
||||
drawDebugInfo(debugImage, crop, detections);
|
||||
bool ret = cv::imwrite(debugOutputPath/path.filename(), debugImage);
|
||||
if(!ret)
|
||||
Log(Log::WARN)<<"could not save debug image to "<<debugOutputPath/path.filename()<<" skipping";
|
||||
}
|
||||
|
||||
croppedImage = image(crop);
|
||||
}
|
||||
else if(!incompleate)
|
||||
{
|
||||
croppedImage = image(crop);
|
||||
}
|
||||
else
|
||||
{
|
||||
croppedImage = image;
|
||||
}
|
||||
|
||||
cv::Mat resizedImage;
|
||||
cv::resize(croppedImage, resizedImage, config.targetSize, 0, 0, cv::INTER_CUBIC);
|
||||
bool ret = cv::imwrite(config.outputDir/path.filename(), resizedImage);
|
||||
if(!ret)
|
||||
Log(Log::WARN)<<"could not save image to "<<config.outputDir/path.filename()<<" skipping";
|
||||
}
|
||||
|
||||
void threadFn(const std::vector<std::filesystem::path>& images, const Config& config, FaceRecognizer* recognizer,
|
||||
std::mutex& reconizerMutex, const std::filesystem::path& debugOutputPath)
|
||||
{
|
||||
Yolo yolo(config.modelPath, {640, 480}, config.classesPath, false);
|
||||
for(std::filesystem::path path : images)
|
||||
pipeline(path, config, yolo, recognizer, reconizerMutex, debugOutputPath);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::vector<std::vector<T>> splitVector(const std::vector<T>& vec, size_t parts)
|
||||
{
|
||||
std::vector<std::vector<T>> out;
|
||||
|
||||
size_t length = vec.size()/parts;
|
||||
size_t remain = vec.size() % parts;
|
||||
|
||||
size_t begin = 0;
|
||||
size_t end = 0;
|
||||
|
||||
for (size_t i = 0; i < std::min(parts, vec.size()); ++i)
|
||||
{
|
||||
end += (remain > 0) ? (length + !!(remain--)) : length;
|
||||
out.push_back(std::vector<T>(vec.begin() + begin, vec.begin() + end));
|
||||
begin = end;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
Log::level = Log::INFO;
|
||||
|
||||
Config config;
|
||||
argp_parse(&argp, argc, argv, 0, 0, &config);
|
||||
|
||||
if(config.outputDir.empty())
|
||||
{
|
||||
Log(Log::ERROR)<<"a output path \"-o\" is required";
|
||||
return 1;
|
||||
}
|
||||
|
||||
if(config.imagePaths.empty())
|
||||
{
|
||||
Log(Log::ERROR)<<"at least one input image or directory is required";
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<std::filesystem::path> imagePaths;
|
||||
|
||||
for(const std::filesystem::path& path : config.imagePaths)
|
||||
getImageFiles(path, imagePaths);
|
||||
|
||||
Log(Log::DEBUG)<<"Images:";
|
||||
for(const::std::filesystem::path& path: imagePaths)
|
||||
Log(Log::DEBUG)<<path;
|
||||
|
||||
if(imagePaths.empty())
|
||||
{
|
||||
Log(Log::ERROR)<<"no image was found\n";
|
||||
return 1;
|
||||
}
|
||||
|
||||
if(!std::filesystem::exists(config.outputDir))
|
||||
{
|
||||
if(!std::filesystem::create_directory(config.outputDir))
|
||||
{
|
||||
Log(Log::ERROR)<<"could not create directory at "<<config.outputDir;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
std::filesystem::path debugOutputPath(config.outputDir/"debug");
|
||||
if(config.debug)
|
||||
{
|
||||
if(!std::filesystem::exists(debugOutputPath))
|
||||
std::filesystem::create_directory(debugOutputPath);
|
||||
}
|
||||
|
||||
FaceRecognizer* recognizer = nullptr;
|
||||
std::mutex recognizerMutex;
|
||||
if(!config.focusPersonImage.empty())
|
||||
{
|
||||
cv::Mat personImage = cv::imread(config.focusPersonImage);
|
||||
if(personImage.empty())
|
||||
{
|
||||
Log(Log::ERROR)<<"Could not load image from "<<config.focusPersonImage;
|
||||
return 1;
|
||||
}
|
||||
recognizer = new FaceRecognizer();
|
||||
recognizer->addReferances({personImage});
|
||||
recognizer->setThreshold(config.threshold);
|
||||
}
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
std::vector<std::vector<std::filesystem::path>> imagePathParts = splitVector(imagePaths, std::thread::hardware_concurrency());
|
||||
|
||||
for(size_t i = 0; i < std::thread::hardware_concurrency(); ++i)
|
||||
threads.push_back(std::thread(threadFn, imagePathParts[i], std::ref(config), recognizer, std::ref(recognizerMutex), std::ref(debugOutputPath)));
|
||||
|
||||
for(std::thread& thread : threads)
|
||||
thread.join();
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user