add readmes
This commit is contained in:
21
LLavaTagger/README.md
Normal file
21
LLavaTagger/README.md
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
# LLavaTagger
|
||||||
|
|
||||||
|
LLavaTagger is a python script that tags images based on a given prompt using the [LLaVA](https://llava-vl.github.io/) multi modal llm. LLavaTagger supports using any number of gpus in ddp parralel for this task.
|
||||||
|
|
||||||
|
## How to use
|
||||||
|
|
||||||
|
first create a python venv and install the required packages into it:
|
||||||
|
|
||||||
|
$ python -m venv venv
|
||||||
|
$ source venv/bin/activate
|
||||||
|
$ pip install -r requirements.txt
|
||||||
|
|
||||||
|
Then run LLavaTagger for instance like so:
|
||||||
|
|
||||||
|
$ python LLavaTagger.py --common_description "a image of a cat, " --prompt "describe the cat in 10 to 20 words" --batch 8 --quantize --image_dir ~/cat_images
|
||||||
|
|
||||||
|
By default LLavaTagger will run in parallel on all available gpus, if this is undesriable please use the ROCR_VISIBLE_DEVICES= or CUDA_VISIBLE_DEVICES= environment variable to hide unwanted gpus
|
||||||
|
|
||||||
|
LLavaTagger will then create a meta.jsonl in the image directory sutable to be used by the scripts of [diffusers](https://github.com/huggingface/diffusers) to train stable diffusion (xl) if other formats are desired ../utils contains scripts to transform the metadata into other formats for instace for the use with [kohya](https://github.com/bmaltais/kohya_ss)
|
||||||
|
|
||||||
|
If editing the created tags is desired, [QImageTagger](https://uvos.xyz/git/uvos/QImageTagger) can be used for this purpose
|
20
PersonDatasetAssembler/README.md
Normal file
20
PersonDatasetAssembler/README.md
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
### PersonDatasetAssembler
|
||||||
|
|
||||||
|
PersonDatasetAssembler is a python script that finds images of a spcific person, specified by a referance image in a directory of images or in a video file. PersonDatasetAssembler supports also raw images.
|
||||||
|
|
||||||
|
## How to use
|
||||||
|
|
||||||
|
first create a python venv and install the required packages into it:
|
||||||
|
|
||||||
|
$ python -m venv venv
|
||||||
|
$ source venv/bin/activate
|
||||||
|
$ pip install -r requirements.txt
|
||||||
|
|
||||||
|
Then run PersonDatasetAssembler for instance like so:
|
||||||
|
|
||||||
|
$ python PersonDatasetAssembler.py --referance someperson.jpg --match_model ../Weights/face_recognition_sface_2021dec.onnx --detect_model ../Weights/face_detection_yunet_2023mar.onnx --input ~/Photos --out imagesOfSomePerson
|
||||||
|
|
||||||
|
Or to extract images from a video:
|
||||||
|
|
||||||
|
$ python PersonDatasetAssembler.py --referance someperson.jpg --match_model ../Weights/face_recognition_sface_2021dec.onnx --detect_model ../Weights/face_detection_yunet_2023mar.onnx -i ~/SomeVideo.mkv --out imagesOfSomePerson
|
||||||
|
|
35
README.md
Normal file
35
README.md
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
# SDImagePreprocess
|
||||||
|
|
||||||
|
This repo contains a collection of high performance tools intended to ease the createion of datasets for image generation AI training like stable diffusion.
|
||||||
|
|
||||||
|
## Included tools
|
||||||
|
|
||||||
|
This repo contains the following tools:
|
||||||
|
|
||||||
|
### SmartCrop
|
||||||
|
|
||||||
|
SmartCrop is an application that uses content aware croping using, [seam carving](https://en.wikipedia.org/wiki/Seam_carving) and resizeing to bring a directory of images into the deisred size and aspect ratio for training. SmartCrop ist configurable to prioritize specific items or specifc persons in the images provided.
|
||||||
|
|
||||||
|
#### Content detected in image:
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
#### Cropped image based on content:
|
||||||
|

|
||||||
|
|
||||||
|
### PersonDatasetAssembler
|
||||||
|
|
||||||
|
PersonDatasetAssembler is a python script that finds images of a spcific person, specified by a referance image in a directory of images or in a video file. PersonDatasetAssembler supports also raw images.
|
||||||
|
|
||||||
|
### LLavaTagger
|
||||||
|
|
||||||
|
LLavaTagger is a python script that tags images based on a given prompt using the [LLaVA](https://llava-vl.github.io/) multi modal llm. LLavaTagger supports using any number of gpus in ddp parralel for this task.
|
||||||
|
|
||||||
|
### DanbooruTagger
|
||||||
|
|
||||||
|
DanbooruTagger is a python script of dubious utility that tags images based using the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) convolutional network.
|
||||||
|
|
||||||
|
|
||||||
|
## License
|
||||||
|
|
||||||
|
All files in this repo are litcenced GPL V3, see LICENSE
|
50
SmartCrop/README.md
Normal file
50
SmartCrop/README.md
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
# SmartCrop
|
||||||
|
|
||||||
|
SmartCrop is an application that uses content aware croping using, [seam carving](https://en.wikipedia.org/wiki/Seam_carving) and resizeing to bring a directory of images into the deisred size and aspect ratio for training. SmartCrop ist configurable to prioritize specific items or specifc persons in the images provided.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
* [cmake](https://cmake.org/) 3.6 or later
|
||||||
|
* [opencv](https://opencv.org/) 4.8 or later
|
||||||
|
* A c++17 capable compiler and standard lib like gcc or llvm/clang
|
||||||
|
* git is required to get the source
|
||||||
|
|
||||||
|
## Building
|
||||||
|
|
||||||
|
The steps to build this application are:
|
||||||
|
|
||||||
|
$ git clone https://uvos.xyz/git/uvos/SDImagePreprocess.git
|
||||||
|
$ cd SDImagePreprocess
|
||||||
|
$ mkdir build
|
||||||
|
$ cmake ..
|
||||||
|
$ make
|
||||||
|
|
||||||
|
The binary can then be found in build/SmartCrop and can optionaly be installed with:
|
||||||
|
|
||||||
|
$ sudo make install
|
||||||
|
|
||||||
|
## Basic usage
|
||||||
|
|
||||||
|
To process all images in the directory ~/images and output the images into ~/proceesedImages:
|
||||||
|
|
||||||
|
$ smartcrop --out processedImages ~/images/*
|
||||||
|
|
||||||
|
To also focus on the person in the image ~/person.jpg
|
||||||
|
|
||||||
|
$ smartcrop --out processedImages --focus-person ~/person.jpg ~/images/*
|
||||||
|
|
||||||
|
To also enable seam carving
|
||||||
|
|
||||||
|
$ smartcrop --out processedImages --focus-person ~/person.jpg --seam-carving ~/images/*
|
||||||
|
|
||||||
|
see smartcrop --help for more
|
||||||
|
|
||||||
|
## Example
|
||||||
|
|
||||||
|
#### Content detected in image:
|
||||||
|

|
||||||
|
|
||||||
|
#### Cropped image based on content:
|
||||||
|

|
||||||
|
|
||||||
|
|
Reference in New Issue
Block a user