add readmes
This commit is contained in:
		
							parent
							
								
									fa52615390
								
							
						
					
					
						commit
						c57d6124fa
					
				
					 4 changed files with 126 additions and 0 deletions
				
			
		
							
								
								
									
										21
									
								
								LLavaTagger/README.md
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										21
									
								
								LLavaTagger/README.md
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,21 @@ | |||
| # LLavaTagger | ||||
| 
 | ||||
| LLavaTagger is a python script that tags images based on a given prompt using the [LLaVA](https://llava-vl.github.io/) multi modal llm. LLavaTagger supports using any number of gpus in ddp parralel for this task. | ||||
| 
 | ||||
| ## How to use | ||||
| 
 | ||||
| first create a python venv and install the required packages into it: | ||||
| 
 | ||||
| 	$ python -m venv venv | ||||
| 	$ source venv/bin/activate | ||||
| 	$ pip install -r requirements.txt | ||||
| 
 | ||||
| Then run LLavaTagger for instance like so: | ||||
| 
 | ||||
| 	$ python LLavaTagger.py --common_description "a image of a cat, " --prompt "describe the cat in 10 to 20 words" --batch 8 --quantize --image_dir ~/cat_images | ||||
| 
 | ||||
| By default LLavaTagger will run in parallel on all available gpus, if this is undesriable please use the ROCR_VISIBLE_DEVICES= or CUDA_VISIBLE_DEVICES= environment variable to hide unwanted gpus | ||||
| 
 | ||||
| LLavaTagger will then create a meta.jsonl in the image directory sutable to be used by the scripts of [diffusers](https://github.com/huggingface/diffusers) to train stable diffusion (xl) if other formats are desired ../utils contains scripts to transform the metadata into other formats for instace for the use with [kohya](https://github.com/bmaltais/kohya_ss) | ||||
| 
 | ||||
| If editing the created tags is desired, [QImageTagger](https://uvos.xyz/git/uvos/QImageTagger) can be used for this purpose | ||||
							
								
								
									
										20
									
								
								PersonDatasetAssembler/README.md
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										20
									
								
								PersonDatasetAssembler/README.md
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,20 @@ | |||
| ### PersonDatasetAssembler | ||||
| 
 | ||||
| PersonDatasetAssembler is a python script that finds images of a spcific person, specified by a referance image in a directory of images or in a video file. PersonDatasetAssembler supports also raw images. | ||||
| 
 | ||||
| ## How to use | ||||
| 
 | ||||
| first create a python venv and install the required packages into it: | ||||
| 
 | ||||
| 	$ python -m venv venv | ||||
| 	$ source venv/bin/activate | ||||
| 	$ pip install -r requirements.txt | ||||
| 
 | ||||
| Then run PersonDatasetAssembler for instance like so: | ||||
| 
 | ||||
| 	$ python PersonDatasetAssembler.py --referance someperson.jpg --match_model ../Weights/face_recognition_sface_2021dec.onnx --detect_model ../Weights/face_detection_yunet_2023mar.onnx --input ~/Photos --out imagesOfSomePerson | ||||
| 
 | ||||
| Or to extract images from a video: | ||||
| 
 | ||||
| 	$ python PersonDatasetAssembler.py --referance someperson.jpg --match_model ../Weights/face_recognition_sface_2021dec.onnx --detect_model ../Weights/face_detection_yunet_2023mar.onnx -i ~/SomeVideo.mkv --out imagesOfSomePerson | ||||
| 
 | ||||
							
								
								
									
										35
									
								
								README.md
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										35
									
								
								README.md
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,35 @@ | |||
| # SDImagePreprocess | ||||
| 
 | ||||
| This repo contains a collection of high performance tools intended to ease the createion of datasets for image generation AI training like stable diffusion. | ||||
| 
 | ||||
| ## Included tools | ||||
| 
 | ||||
| This repo contains the following tools: | ||||
| 
 | ||||
| ### SmartCrop | ||||
| 
 | ||||
| SmartCrop is an application that uses content aware croping using, [seam carving](https://en.wikipedia.org/wiki/Seam_carving) and resizeing to bring a directory of images into the deisred size and aspect ratio for training. SmartCrop ist configurable to prioritize specific items or specifc persons in the images provided. | ||||
| 
 | ||||
| #### Content detected in image: | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| #### Cropped image based on content: | ||||
|  | ||||
| 
 | ||||
| ### PersonDatasetAssembler | ||||
| 
 | ||||
| PersonDatasetAssembler is a python script that finds images of a spcific person, specified by a referance image in a directory of images or in a video file. PersonDatasetAssembler supports also raw images. | ||||
| 
 | ||||
| ### LLavaTagger | ||||
| 
 | ||||
| LLavaTagger is a python script that tags images based on a given prompt using the [LLaVA](https://llava-vl.github.io/) multi modal llm. LLavaTagger supports using any number of gpus in ddp parralel for this task. | ||||
| 
 | ||||
| ### DanbooruTagger | ||||
| 
 | ||||
| DanbooruTagger is a python script of dubious utility that tags images based using the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) convolutional network. | ||||
| 
 | ||||
| 
 | ||||
| ## License | ||||
| 
 | ||||
| All files in this repo are litcenced GPL V3, see LICENSE | ||||
							
								
								
									
										50
									
								
								SmartCrop/README.md
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										50
									
								
								SmartCrop/README.md
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,50 @@ | |||
| # SmartCrop | ||||
| 
 | ||||
| SmartCrop is an application that uses content aware croping using, [seam carving](https://en.wikipedia.org/wiki/Seam_carving) and resizeing to bring a directory of images into the deisred size and aspect ratio for training. SmartCrop ist configurable to prioritize specific items or specifc persons in the images provided. | ||||
| 
 | ||||
| ## Requirements | ||||
| 
 | ||||
| * [cmake](https://cmake.org/) 3.6 or later | ||||
| * [opencv](https://opencv.org/) 4.8 or later | ||||
| * A c++17 capable compiler and standard lib like gcc or llvm/clang | ||||
| * git is required to get the source | ||||
| 
 | ||||
| ## Building | ||||
| 
 | ||||
| The steps to build this application are: | ||||
| 
 | ||||
| 	$ git clone https://uvos.xyz/git/uvos/SDImagePreprocess.git | ||||
| 	$ cd SDImagePreprocess | ||||
| 	$ mkdir build | ||||
| 	$ cmake .. | ||||
| 	$ make | ||||
| 
 | ||||
| The binary can then be found in build/SmartCrop and can optionaly be installed with: | ||||
| 
 | ||||
| 	$ sudo make install | ||||
| 
 | ||||
| ## Basic usage | ||||
| 
 | ||||
| To process all images in the directory ~/images and output the images into ~/proceesedImages: | ||||
| 
 | ||||
| 	$ smartcrop --out processedImages ~/images/* | ||||
| 
 | ||||
| To also focus on the person in the image ~/person.jpg | ||||
| 
 | ||||
| 	$ smartcrop --out processedImages --focus-person ~/person.jpg ~/images/* | ||||
| 
 | ||||
| To also enable seam carving | ||||
| 
 | ||||
| 	$ smartcrop --out processedImages --focus-person ~/person.jpg --seam-carving ~/images/* | ||||
| 
 | ||||
| see smartcrop --help for more | ||||
| 
 | ||||
| ## Example | ||||
| 
 | ||||
| #### Content detected in image: | ||||
|  | ||||
| 
 | ||||
| #### Cropped image based on content: | ||||
|  | ||||
| 
 | ||||
| 
 | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue