initial commit

This commit is contained in:
uvos 2024-06-14 08:54:09 +02:00
commit cd1e2756bc
39 changed files with 4163 additions and 0 deletions

7
CMakeLists.txt Normal file
View File

@ -0,0 +1,7 @@
cmake_minimum_required(VERSION 3.6)
project(ImageAiUtils)
set(CMAKE_CXX_STANDARD 17)
set(WEIGHT_DIR ${CMAKE_CURRENT_SOURCE_DIR}/Weights)
add_subdirectory(SmartCrop)

View File

@ -0,0 +1,105 @@
import warnings
from deepdanbooru_onnx import DeepDanbooru
from PIL import Image
import argparse
import cv2
import os
from multiprocessing import Process, Queue
import json
from tqdm import tqdm
image_ext_ocv = [".bmp", ".jpeg", ".jpg", ".png"]
def find_image_files(path: str) -> list[str]:
paths = list()
for root, dirs, files in os.walk(path):
for filename in files:
name, extension = os.path.splitext(filename)
if extension.lower() in image_ext_ocv:
paths.append(os.path.join(root, filename))
return paths
def image_loader(paths: list[str]):
for path in paths:
name, extension = os.path.splitext(path)
extension = extension.lower()
imagebgr = cv2.imread(path)
image = cv2.cvtColor(imagebgr, cv2.COLOR_BGR2RGB)
if image is None:
print(f"Warning: could not load {path}")
else:
image_pil = Image.fromarray(image)
yield image_pil, path
def pipeline(queue: Queue, image_paths: list[str], device: int):
danbooru = DeepDanbooru()
for path in image_paths:
imageprompt = ""
tags = danbooru(path)
for tag in tags:
imageprompt = imageprompt + ", " + tag
queue.put({"file_name": path, "text": imageprompt})
def split_list(input_list, count):
target_length = int(len(input_list) / count)
for i in range(0, count - 1):
yield input_list[i * target_length: (i + 1) * target_length]
yield input_list[(count - 1) * target_length: len(input_list)]
def save_meta(meta_file, meta, reldir, common_description):
meta["file_name"] = os.path.relpath(meta["file_name"], reldir)
if common_description is not None:
meta["text"] = common_description + meta["text"]
meta_file.write(json.dumps(meta) + '\n')
if __name__ == "__main__":
parser = argparse.ArgumentParser("A script to tag images via DeepDanbooru")
parser.add_argument('--batch', '-b', default=4, type=int, help="Batch size to use for inference")
parser.add_argument('--common_description', '-c', help="An optional description that will be preended to the ai generated one")
parser.add_argument('--image_dir', '-i', help="A directory containg the images to tag")
args = parser.parse_args()
nparalell = 2
image_paths = find_image_files(args.image_dir)
image_path_chunks = list(split_list(image_paths, nparalell))
print(f"Will use {nparalell} processies to create tags")
queue = Queue()
processies = list()
for i in range(0, nparalell):
processies.append(Process(target=pipeline, args=(queue, image_path_chunks[i], i)))
processies[-1].start()
progress = tqdm(desc="Generateing tags", total=len(image_paths))
exit = False
with open(os.path.join(args.image_dir, "metadata.jsonl"), mode='w') as output_file:
while not exit:
if not queue.empty():
meta = queue.get()
save_meta(output_file, meta, args.image_dir, args.common_description)
progress.update()
exit = True
for process in processies:
if process.is_alive():
exit = False
break
while not queue.empty():
meta = queue.get()
save_meta(output_file, meta, args.image_dir, args.common_description)
progress.update()
for process in processies:
process.join()

View File

@ -0,0 +1,3 @@
from .deepdanbooru_onnx import DeepDanbooru
from .deepdanbooru_onnx import process_image
__version__ = '0.0.8'

View File

@ -0,0 +1,244 @@
import onnxruntime as ort
from PIL import Image
import numpy as np
import os
from tqdm import tqdm
import requests
import hashlib
from typing import List, Union
import shutil
from pathlib import Path
def process_image(image: Image.Image) -> np.ndarray:
"""
Convert an image to a numpy array.
:param image: the image to convert
:return: the numpy array
"""
image = image.convert("RGB").resize((512, 512))
image = np.array(image).astype(np.float32) / 255
image = image.transpose((2, 0, 1)).reshape(1, 3, 512, 512).transpose((0, 2, 3, 1))
return image
def download(url: str, save_path: str, md5: str, length: str) -> bool:
"""
Download a file from url to save_path.
If the file already exists, check its md5.
If the md5 matches, return True,if the md5 doesn't match, return False.
:param url: the url of the file to download
:param save_path: the path to save the file
:param md5: the md5 of the file
:param length: the length of the file
:return: True if the file is downloaded successfully, False otherwise
"""
try:
response = requests.get(url=url, stream=True)
with open(save_path, "wb") as f:
with tqdm.wrapattr(
response.raw, "read", total=length, desc="Downloading"
) as r_raw:
shutil.copyfileobj(r_raw, f)
return (
True
if hashlib.md5(open(save_path, "rb").read()).hexdigest() == md5
else False
)
except Exception as e:
print(e)
return False
def download_model():
"""
Download the model and tags file from the server.
:return: the path to the model and tags file
"""
model_url = (
"https://huggingface.co/chinoll/deepdanbooru/resolve/main/deepdanbooru.onnx"
)
tags_url = "https://huggingface.co/chinoll/deepdanbooru/resolve/main/tags.txt"
model_md5 = "16be4e40ebcc0b1d1915bbf31f00969f"
tags_md5 = "a3f764de985cdeba89f1d232a4204402"
model_length = 643993025
tags_length = 133810
home = str(Path.home()) + "/.deepdanbooru_onnx/"
if not os.path.exists(home):
os.mkdir(home)
model_name = "deepdanbooru.onnx"
tags_name = "tags.txt"
model_path = home + model_name
tags_path = home + tags_name
if os.path.exists(model_path):
if hashlib.md5(open(model_path, "rb").read()).hexdigest() != model_md5:
os.remove(model_path)
if not download(model_url, model_path, model_md5, model_length):
raise ValueError("Model download failed")
else:
if not download(model_url, model_path, model_md5, model_length):
raise ValueError("Model download failed")
if os.path.exists(tags_path):
if hashlib.md5(open(tags_path, "rb").read()).hexdigest() != tags_md5:
os.remove(tags_path)
if not download(tags_url, tags_path, tags_md5, tags_length):
raise ValueError("Tags download failed")
else:
if not download(tags_url, tags_path, tags_md5, tags_length):
raise ValueError("Tags download failed")
return model_path, tags_path
class DeepDanbooru:
def __init__(
self,
mode: str = "auto",
model_path: Union[str, None] = None,
tags_path: Union[str, None] = None,
threshold: Union[float, int] = 0.6,
pin_memory: bool = False,
batch_size: int = 1,
):
"""
Initialize the DeepDanbooru class.
:param mode: the mode of the model, "cpu" or "gpu" or "auto"
:param model_path: the path to the model file
:param tags_path: the path to the tags file
:param threshold: the threshold of the model
:param pin_memory: whether to use pin memory
:param batch_size: the batch size of the model
"""
providers = {
"cpu": "CPUExecutionProvider",
"gpu": "CUDAExecutionProvider",
"tensorrt": "TensorrtExecutionProvider",
"auto": (
"CUDAExecutionProvider"
if "CUDAExecutionProvider" in ort.get_available_providers()
else "CPUExecutionProvider"
),
}
if not (isinstance(threshold, float) or isinstance(threshold, int)):
raise TypeError("threshold must be float or int")
if threshold < 0 or threshold > 1:
raise ValueError("threshold must be between 0 and 1")
if mode not in providers:
raise ValueError(
"Mode not supported. Please choose from: cpu, gpu, tensorrt"
)
if providers[mode] not in ort.get_available_providers():
raise ValueError(
f"Your device is not supported {mode}. Please choose from: cpu"
)
if model_path is not None and not os.path.exists(model_path):
raise FileNotFoundError("Model file not found")
if tags_path is not None and not os.path.exists(tags_path):
raise FileNotFoundError("Tags file not found")
if model_path is None or tags_path is None:
model_path, tags_path = download_model()
self.session = ort.InferenceSession(model_path, providers=[providers[mode]])
self.tags = [i.replace("\n", "") for i in open(tags_path, "r").readlines()]
self.input_name = self.session.get_inputs()[0].name
self.output_name = [output.name for output in self.session.get_outputs()]
self.threshold = threshold
self.pin_memory = pin_memory
self.batch_size = batch_size
self.mode = mode
self.cache = {}
def __str__(self) -> str:
return f"DeepDanbooru(mode={self.mode}, threshold={self.threshold}, pin_memory={self.pin_memory}, batch_size={self.batch_size})"
def __repr__(self) -> str:
return self.__str__()
def from_image_inference(self, image: Image.Image) -> dict:
image = process_image(image)
return self.predict(image)
def from_ndarray_inferece(self, image: np.ndarray) -> dict:
if image.shape != (1, 512, 512, 3):
raise ValueError(f"Image must be {(1, 512, 512, 3)}")
return self.predict(image)
def from_file_inference(self, image: str) -> dict:
return self.from_image_inference(Image.open(image))
def from_list_inference(self, image: Union[list, tuple]) -> List[dict]:
if self.pin_memory:
image = [process_image(Image.open(i)) for i in image]
for i in [
image[i : i + self.batch_size]
for i in range(0, len(image), self.batch_size)
]:
imagelist = i
bs = len(i)
_imagelist, idx, hashlist = [], [], []
for j in range(len(i)):
img = Image.open(i[j]) if not self.pin_memory else imagelist[j]
image_hash = hashlib.md5(np.array(img).astype(np.uint8)).hexdigest()
hashlist.append(image_hash)
if image_hash in self.cache:
continue
if not self.pin_memory:
_imagelist.append(process_image(img))
else:
_imagelist.append(imagelist[j])
idx.append(j)
imagelist = _imagelist
if len(imagelist) != 0:
_image = np.vstack(imagelist)
results = self.inference(_image)
results_idx = 0
else:
results = []
for i in range(bs):
image_tag = {}
if i in idx:
hash = hashlist[i]
for tag, score in zip(self.tags, results[results_idx]):
if score >= self.threshold:
image_tag[tag] = score
results_idx += 1
self.cache[hash] = image_tag
yield image_tag
else:
yield self.cache[hashlist[i]]
def inference(self, image):
return self.session.run(self.output_name, {self.input_name: image})[0]
def predict(self, image):
result = self.inference(image)
image_tag = {}
for tag, score in zip(self.tags, result[0]):
if score >= self.threshold:
image_tag[tag] = score
return image_tag
def __call__(self, image) -> Union[dict, List[dict]]:
if isinstance(image, str):
return self.from_file_inference(image)
elif isinstance(image, np.ndarray):
return self.from_ndarray_inferece(image)
elif isinstance(image, list) or isinstance(image, tuple):
return self.from_list_inference(image)
elif isinstance(image, Image.Image):
return self.from_image_inference(image)
else:
raise ValueError("Image must be a file path or a numpy array or list/tuple")

674
LICENSE Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

142
LLavaTagger/LLavaTagger.py Normal file
View File

@ -0,0 +1,142 @@
import warnings
warnings.simplefilter(action='ignore')
from transformers import AutoProcessor, LlavaForConditionalGeneration, BitsAndBytesConfig, logging
import argparse
import cv2
import torch
import os
import numpy
from typing import Iterator
from torch.multiprocessing import Process, Queue
import json
from tqdm import tqdm
image_ext_ocv = [".bmp", ".jpeg", ".jpg", ".png"]
def find_image_files(path: str) -> list[str]:
paths = list()
for root, dirs, files in os.walk(path):
for filename in files:
name, extension = os.path.splitext(filename)
if extension.lower() in image_ext_ocv:
paths.append(os.path.join(root, filename))
return paths
def image_loader(paths: list[str]) -> Iterator[numpy.ndarray]:
for path in paths:
name, extension = os.path.splitext(path)
extension = extension.lower()
imagebgr = cv2.imread(path)
image = cv2.cvtColor(imagebgr, cv2.COLOR_BGR2RGB)
if image is None:
print(f"Warning: could not load {path}")
else:
yield image, path
def pipeline(queue: Queue, image_paths: list[str], prompt: str, device: torch.device, model_name_or_path: str, batch_size: int):
model = LlavaForConditionalGeneration.from_pretrained(model_name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=None,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type='nf4',
), device_map=device, attn_implementation="flash_attention_2")
processor = AutoProcessor.from_pretrained(model_name_or_path)
image_generator = image_loader(image_paths)
stop = False
finished_count = 0
while not stop:
prompts = list()
images = list()
filenames = list()
for i in range(0, batch_size):
image, filename = next(image_generator, (None, None))
if image is None:
stop = True
break
filenames.append(filename)
images.append(image)
prompts.append(prompt)
if len(images) == 0:
break
inputs = processor(text=prompts, images=images, return_tensors="pt").to(model.device)
generate_ids = model.generate(**inputs, max_new_tokens=100, min_new_tokens=3, length_penalty=1.0, do_sample=False, temperature=1.0, top_k=50, top_p=1.0)
decodes = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
finished_count += len(images)
for i, decoded in enumerate(decodes):
trim = len(prompt) - len("<image>")
queue.put({"file_name": filenames[i], "text": decoded[trim:].strip()})
def split_list(input_list, count):
target_length = int(len(input_list) / count)
for i in range(0, count - 1):
yield input_list[i * target_length: (i + 1) * target_length]
yield input_list[(count - 1) * target_length: len(input_list)]
def save_meta(meta_file, meta, reldir, common_description):
meta["file_name"] = os.path.relpath(meta["file_name"], reldir)
if common_description is not None:
meta["text"] = common_description + meta["text"]
meta_file.write(json.dumps(meta) + '\n')
if __name__ == "__main__":
parser = argparse.ArgumentParser("A script to tag images via llava")
parser.add_argument('--model', '-m', default="llava-hf/llava-1.5-13b-hf", help="model to use")
parser.add_argument('--quantize', '-q', action='store_true', help="load quantized")
parser.add_argument('--prompt', '-p', default="Please describe this image in 10 to 20 words.", help="Prompt to use on eatch image")
parser.add_argument('--batch', '-b', default=4, type=int, help="Batch size to use for inference")
parser.add_argument('--common_description', '-c', help="An optional description that will be preended to the ai generated one")
parser.add_argument('--image_dir', '-i', required=True, help="A directory containg the images to tag")
args = parser.parse_args()
prompt = "USER: <image>\n" + args.prompt + "\nASSISTANT: "
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
image_paths = find_image_files(args.image_dir)
image_path_chunks = list(split_list(image_paths, torch.cuda.device_count()))
print(f"Will use {torch.cuda.device_count()} processies to create tags")
logging.set_verbosity_error()
warnings.filterwarnings("ignore")
torch.multiprocessing.set_start_method('spawn')
queue = Queue()
processies = list()
for i in range(0, torch.cuda.device_count()):
processies.append(Process(target=pipeline, args=(queue, image_path_chunks[i], prompt, torch.device(i), args.model, args.batch)))
processies[-1].start()
progress = tqdm(desc="Generateing tags", total=len(image_paths))
exit = False
with open(os.path.join(args.image_dir, "metadata.jsonl"), mode='w') as output_file:
while not exit:
if not queue.empty():
meta = queue.get()
save_meta(output_file, meta, args.image_dir, args.common_description)
progress.update()
exit = True
for process in processies:
if process.is_alive():
exit = False
break
while not queue.empty():
meta = queue.get()
save_meta(output_file, meta, args.image_dir, args.common_description)
progress.update()
for process in processies:
process.join()

21
LLavaTagger/README.md Normal file
View File

@ -0,0 +1,21 @@
# LLavaTagger
LLavaTagger is a python script that tags images based on a given prompt using the [LLaVA](https://llava-vl.github.io/) multi modal llm. LLavaTagger supports using any number of gpus in ddp parralel for this task.
## How to use
first create a python venv and install the required packages into it:
$ python -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt
Then run LLavaTagger for instance like so:
$ python LLavaTagger.py --common_description "a image of a cat, " --prompt "describe the cat in 10 to 20 words" --batch 8 --quantize --image_dir ~/cat_images
By default LLavaTagger will run in parallel on all available gpus, if this is undesriable please use the ROCR_VISIBLE_DEVICES= or CUDA_VISIBLE_DEVICES= environment variable to hide unwanted gpus
LLavaTagger will then create a meta.jsonl in the image directory sutable to be used by the scripts of [diffusers](https://github.com/huggingface/diffusers) to train stable diffusion (xl) if other formats are desired ../utils contains scripts to transform the metadata into other formats for instace for the use with [kohya](https://github.com/bmaltais/kohya_ss)
If editing the created tags is desired, [QImageTagger](https://uvos.xyz/git/uvos/QImageTagger) can be used for this purpose

View File

@ -0,0 +1,11 @@
accelerate==0.29.0
bitsandbytes
huggingface-hub==0.22.2
ninja==1.11.1.1
safetensors==0.4.2
tokenizers==0.15.2
transformers
torch
opencv-python
numpy
tqdm

View File

@ -0,0 +1,174 @@
#!/bin/python3
# PersonDatasetAssembler - A tool to assmble images of a specific person from a
# directory of images or from a video file
# Copyright (C) 2024 Carl Philipp Klemm
#
# This file is part of PersonDatasetAssembler.
#
# PersonDatasetAssembler is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PersonDatasetAssembler is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PersonDatasetAssembler. If not, see <http://www.gnu.org/licenses/>.
import argparse
import os
from typing import Iterator
import cv2
import numpy
from tqdm import tqdm
from wand.exceptions import BlobError
from wand.image import Image
image_ext_ocv = [".bmp", ".jpeg", ".jpg", ".png"]
image_ext_wand = [".dng", ".arw"]
class LoadException(Exception):
pass
def find_image_files(path: str) -> list[str]:
paths = list()
for root, dirs, files in os.walk(path):
for filename in files:
name, extension = os.path.splitext(filename)
if extension.lower() in image_ext_ocv or extension in image_ext_wand:
paths.append(os.path.join(root, filename))
return paths
def image_loader(paths: list[str]) -> Iterator[numpy.ndarray]:
for path in paths:
name, extension = os.path.splitext(path)
extension = extension.lower()
if extension in image_ext_ocv:
image = cv2.imread(path)
if image is None:
print(f"Warning: could not load {path}")
else:
yield image
elif extension in image_ext_wand:
try:
image = Image(filename=path)
except BlobError as e:
print(f"Warning: could not load {path}, {e}")
continue
def extract_video_images(video: cv2.VideoCapture, interval: int = 0):
ret = True
frame_counter = 0
while ret:
video.set(cv2.CAP_PROP_POS_FRAMES, frame_counter)
ret, frame = video.read()
if ret:
yield frame
frame_counter += interval
def contains_face_match(detector: cv2.FaceDetectorYN, recognizer: cv2.FaceRecognizerSF, image: numpy.ndarray, referance_features: list(), thresh: float) -> bool:
detector.setInputSize([image.shape[1], image.shape[0]])
faces = detector.detect(image)[1]
if faces is None:
return 0, False
for face in faces:
cropped_image = recognizer.alignCrop(image, face)
features = recognizer.feature(cropped_image)
score_accum = 0.0
for referance in referance_features:
score_accum += recognizer.match(referance, features, 0)
score = score_accum / len(referance_features)
if score > thresh:
return score, True
return 0, False
def process_referance(detector: cv2.FaceDetectorYN, recognizer: cv2.FaceRecognizerSF, referance_path: str) -> list():
images = list()
out = list()
if os.path.isfile(referance_path):
image = cv2.imread(referance_path)
if image is None:
print(f"Could not load image from {referance_path}")
else:
images.append(image)
elif os.path.isdir(referance_path):
filenames = find_image_files(referance_path)
images = list(image_loader(filenames))
for image in images:
detector.setInputSize([image.shape[1], image.shape[0]])
faces = detector.detect(image)[1]
if faces is None:
print("unable to find face in referance image")
exit(1)
image = recognizer.alignCrop(image, faces[0])
features = recognizer.feature(image)
out.append(features)
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser("Script to assemble a dataset of images of a specific person")
parser.add_argument('--out', '-o', default="out", help="place to put dataset")
parser.add_argument('--input', '-i', required=True, help="directory or video file to get images from")
parser.add_argument('--skip', '-s', default=0, type=int, help="skip n frames between samples when grabbing from a video file")
parser.add_argument('--referance', '-r', required=True, help="referance image or directory of images of the person to be found")
parser.add_argument('--match_model', '-m', required=True, help="Path to the onnx recognition model to be used")
parser.add_argument('--detect_model', '-d', required=True, help="Path to the onnx detection model to be used")
parser.add_argument('--threshold', '-t', default=0.362, type=float, help="match threshold to use")
parser.add_argument('--invert', '-n', action='store_true', help="output files that DONT match")
args = parser.parse_args()
recognizer = cv2.FaceRecognizerSF.create(model=args.match_model, config="", backend_id=cv2.dnn.DNN_BACKEND_DEFAULT , target_id=cv2.dnn.DNN_TARGET_CPU)
detector = cv2.FaceDetectorYN.create(model=args.detect_model, config="", input_size=[320, 320],
score_threshold=0.6, nms_threshold=0.3, top_k=5000, backend_id=cv2.dnn.DNN_BACKEND_DEFAULT, target_id=cv2.dnn.DNN_TARGET_CPU)
referance_features = process_referance(detector, recognizer, args.referance)
if len(referance_features) < 1:
print(f"Could not load any referance image(s) from {args.referance}")
exit(1)
if os.path.isfile(args.input):
video = cv2.VideoCapture(args.input)
if not video.isOpened():
print(f"Unable to open {args.input} as a video file")
exit(1)
image_generator = extract_video_images(video, args.skip + 1)
total_images = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) / (args.skip + 1)
elif os.path.isdir(args.input):
image_filenams = find_image_files(args.input)
image_generator = image_loader(image_filenams)
total_images = len(image_filenams)
else:
print(f"{args.input} is not a video file nor is it a directory")
exit(1)
os.makedirs(args.out, exist_ok=True)
progress = tqdm(total=int(total_images), desc="0.00")
counter = 0
for image in image_generator:
if image.shape[0] > 512:
aspect = image.shape[0] / image.shape[1]
resized = cv2.resize(image, (int(512 / aspect), 512), 0, 0, cv2.INTER_AREA)
else:
resized = image
score, match = contains_face_match(detector, recognizer, resized, referance_features, args.threshold)
if match and not args.invert or not match and args.invert:
filename = f"{counter:04}.png"
cv2.imwrite(os.path.join(args.out, filename), image)
counter += 1
progress.set_description(f"{score:1.2f}")
progress.update()

View File

@ -0,0 +1,20 @@
### PersonDatasetAssembler
PersonDatasetAssembler is a python script that finds images of a spcific person, specified by a referance image in a directory of images or in a video file. PersonDatasetAssembler supports also raw images.
## How to use
first create a python venv and install the required packages into it:
$ python -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt
Then run PersonDatasetAssembler for instance like so:
$ python PersonDatasetAssembler.py --referance someperson.jpg --match_model ../Weights/face_recognition_sface_2021dec.onnx --detect_model ../Weights/face_detection_yunet_2023mar.onnx --input ~/Photos --out imagesOfSomePerson
Or to extract images from a video:
$ python PersonDatasetAssembler.py --referance someperson.jpg --match_model ../Weights/face_recognition_sface_2021dec.onnx --detect_model ../Weights/face_detection_yunet_2023mar.onnx -i ~/SomeVideo.mkv --out imagesOfSomePerson

View File

@ -0,0 +1,4 @@
numpy==1.26.4
opencv-python==4.10.0.82
tqdm==4.66.4
Wand==0.6.13

35
README.md Normal file
View File

@ -0,0 +1,35 @@
# SDImagePreprocess
This repo contains a collection of high performance tools intended to ease the createion of datasets for image generation AI training like stable diffusion.
## Included tools
This repo contains the following tools:
### SmartCrop
SmartCrop is an application that uses content aware croping using, [seam carving](https://en.wikipedia.org/wiki/Seam_carving) and resizeing to bring a directory of images into the deisred size and aspect ratio for training. SmartCrop ist configurable to prioritize specific items or specifc persons in the images provided.
#### Content detected in image:
![Content found in image](SmartCrop/images/IMGP3692.jpg)
#### Cropped image based on content:
![Cropped image](SmartCrop/images/IMGP3692C.jpg)
### PersonDatasetAssembler
PersonDatasetAssembler is a python script that finds images of a spcific person, specified by a referance image in a directory of images or in a video file. PersonDatasetAssembler supports also raw images.
### LLavaTagger
LLavaTagger is a python script that tags images based on a given prompt using the [LLaVA](https://llava-vl.github.io/) multi modal llm. LLavaTagger supports using any number of gpus in ddp parralel for this task.
### DanbooruTagger
DanbooruTagger is a python script of dubious utility that tags images based using the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) convolutional network.
## License
All files in this repo are litcenced GPL V3, see LICENSE

16
SmartCrop/CMakeLists.txt Normal file
View File

@ -0,0 +1,16 @@
cmake_minimum_required(VERSION 3.6)
find_package(OpenCV REQUIRED)
set(CMAKE_CXX_STANDARD 17)
set(SRC_FILES main.cpp yolo.cpp tokenize.cpp log.cpp seamcarving.cpp utils.cpp intelligentroi.cpp facerecognizer.cpp)
add_executable(smartcrop ${SRC_FILES})
target_link_libraries(smartcrop ${OpenCV_LIBS} -ltbb)
target_include_directories(smartcrop PRIVATE ${OpenCV_INCLUDE_DIRS})
target_compile_options(smartcrop PRIVATE -s -g -Wall)
message(WARNING ${WEIGHT_DIR})
target_compile_definitions(smartcrop PUBLIC WEIGHT_DIR="${WEIGHT_DIR}")
install(TARGETS smartcrop RUNTIME DESTINATION bin)

50
SmartCrop/README.md Normal file
View File

@ -0,0 +1,50 @@
# SmartCrop
SmartCrop is an application that uses content aware croping using, [seam carving](https://en.wikipedia.org/wiki/Seam_carving) and resizeing to bring a directory of images into the deisred size and aspect ratio for training. SmartCrop ist configurable to prioritize specific items or specifc persons in the images provided.
## Requirements
* [cmake](https://cmake.org/) 3.6 or later
* [opencv](https://opencv.org/) 4.8 or later
* A c++17 capable compiler and standard lib like gcc or llvm/clang
* git is required to get the source
## Building
The steps to build this application are:
$ git clone https://uvos.xyz/git/uvos/SDImagePreprocess.git
$ cd SDImagePreprocess
$ mkdir build
$ cmake ..
$ make
The binary can then be found in build/SmartCrop and can optionaly be installed with:
$ sudo make install
## Basic usage
To process all images in the directory ~/images and output the images into ~/proceesedImages:
$ smartcrop --out processedImages ~/images/*
To also focus on the person in the image ~/person.jpg
$ smartcrop --out processedImages --focus-person ~/person.jpg ~/images/*
To also enable seam carving
$ smartcrop --out processedImages --focus-person ~/person.jpg --seam-carving ~/images/*
see smartcrop --help for more
## Example
#### Content detected in image:
![Content found in image](images/IMGP3692.jpg)
#### Cropped image based on content:
![Cropped image](images/IMGP3692C.jpg)

View File

@ -0,0 +1,163 @@
//
// SmartCrop - A tool for content aware croping of images
// Copyright (C) 2024 Carl Philipp Klemm
//
// This file is part of SmartCrop.
//
// SmartCrop is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// SmartCrop is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
//
#include "facerecognizer.h"
#include <filesystem>
#define INCBIN_PREFIX r
#include "incbin.h"
INCBIN(defaultRecognizer, WEIGHT_DIR "/face_recognition_sface_2021dec.onnx");
INCBIN(defaultDetector, WEIGHT_DIR "/face_detection_yunet_2023mar.onnx");
#include <opencv2/dnn/dnn.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <fstream>
#include "log.h"
static const std::vector<unsigned char> onnx((unsigned char*)rdefaultDetectorData, ((unsigned char*)rdefaultDetectorData)+rdefaultDetectorSize);
FaceRecognizer::FaceRecognizer(std::filesystem::path recognizerPath, const std::filesystem::path& detectorPath, const std::vector<cv::Mat>& referances)
{
if(detectorPath.empty())
{
Log(Log::INFO)<<"Using builtin face detection model";
detector = cv::FaceDetectorYN::create("onnx", onnx, std::vector<unsigned char>(), {320, 320}, 0.6, 0.3, 5000, cv::dnn::Backend::DNN_BACKEND_OPENCV, cv::dnn::Target::DNN_TARGET_CPU);
if(!detector)
throw LoadException("Unable to load detector network from built in file");
}
else
{
detector = cv::FaceDetectorYN::create(detectorPath, "", {320, 320}, 0.6, 0.3, 5000, cv::dnn::Backend::DNN_BACKEND_OPENCV, cv::dnn::Target::DNN_TARGET_CPU);
if(!detector)
throw LoadException("Unable to load detector network from "+detectorPath.string());
}
bool defaultNetwork = recognizerPath.empty();
if(defaultNetwork)
{
Log(Log::INFO)<<"Using builtin face recognition model";
recognizerPath = cv::tempfile("onnx");
std::ofstream file(recognizerPath);
if(!file.is_open())
throw LoadException("Unable open temporary file at "+recognizerPath.string());
Log(Log::DEBUG)<<"Using "<<recognizerPath<<" as temporary file for onnx recongnition network";
file.write(reinterpret_cast<const char*>(rdefaultRecognizerData), rdefaultRecognizerSize);
file.close();
}
recognizer = cv::FaceRecognizerSF::create(recognizerPath.string(), "", cv::dnn::Backend::DNN_BACKEND_OPENCV, cv::dnn::Target::DNN_TARGET_CPU);
if(defaultNetwork)
std::filesystem::remove(recognizerPath);
if(!recognizer)
throw LoadException("Unable to load recognizer network from "+recognizerPath.string());
addReferances(referances);
}
cv::Mat FaceRecognizer::detectFaces(const cv::Mat& input)
{
detector->setInputSize(input.size());
cv::Mat faces;
detector->detect(input, faces);
return faces;
}
bool FaceRecognizer::addReferances(const std::vector<cv::Mat>& referances)
{
bool ret = false;
for(const cv::Mat& image : referances)
{
cv::Mat faces = detectFaces(image);
assert(faces.cols == 15);
if(faces.empty())
{
Log(Log::WARN)<<"A referance image provided dose not contian any face";
continue;
}
if(faces.rows > 1)
Log(Log::WARN)<<"A referance image provided contains more than one face, only the first detected face will be considered";
cv::Mat cropedImage;
recognizer->alignCrop(image, faces.row(0), cropedImage);
cv::Mat features;
recognizer->feature(cropedImage, features);
referanceFeatures.push_back(features.clone());
ret = true;
}
return ret;
}
void FaceRecognizer::setThreshold(double threasholdIn)
{
threshold = threasholdIn;
}
double FaceRecognizer::getThreshold()
{
return threshold;
}
void FaceRecognizer::clearReferances()
{
referanceFeatures.clear();
}
FaceRecognizer::Detection FaceRecognizer::isMatch(const cv::Mat& input, bool alone)
{
cv::Mat faces = detectFaces(input);
Detection bestMatch;
bestMatch.confidence = 0;
bestMatch.person = -1;
if(alone && faces.rows > 1)
{
bestMatch.person = -2;
return bestMatch;
}
for(int i = 0; i < faces.rows; ++i)
{
cv::Mat face;
recognizer->alignCrop(input, faces.row(i), face);
cv::Mat features;
recognizer->feature(face, features);
features = features.clone();
for(size_t referanceIndex = 0; referanceIndex < referanceFeatures.size(); ++referanceIndex)
{
double score = recognizer->match(referanceFeatures[referanceIndex], features, cv::FaceRecognizerSF::FR_COSINE);
if(score > threshold && score > bestMatch.confidence)
{
bestMatch.confidence = score;
bestMatch.person = referanceIndex;
bestMatch.rect = cv::Rect(faces.at<int>(i, 0), faces.at<int>(i, 1), faces.at<int>(i, 2), faces.at<int>(i, 3));
}
}
}
return bestMatch;
}

View File

@ -0,0 +1,67 @@
/* * SmartCrop - A tool for content aware croping of images
* Copyright (C) 2024 Carl Philipp Klemm
*
* This file is part of SmartCrop.
*
* SmartCrop is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SmartCrop is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <exception>
#include <opencv2/core/mat.hpp>
#include <opencv2/objdetect/face.hpp>
#include <opencv2/core.hpp>
#include <vector>
#include <memory>
#include <filesystem>
class FaceRecognizer
{
public:
struct Detection
{
int person;
float confidence;
cv::Rect rect;
};
class LoadException : public std::exception
{
private:
std::string message;
public:
LoadException(const std::string& msg): std::exception(), message(msg) {}
virtual const char* what() const throw() override
{
return message.c_str();
}
};
private:
std::vector<cv::Mat> referanceFeatures;
std::shared_ptr<cv::FaceRecognizerSF> recognizer;
std::shared_ptr<cv::FaceDetectorYN> detector;
double threshold = 0.363;
public:
FaceRecognizer(std::filesystem::path recognizerPath = "", const std::filesystem::path& detectorPath = "", const std::vector<cv::Mat>& referances = std::vector<cv::Mat>());
cv::Mat detectFaces(const cv::Mat& input);
Detection isMatch(const cv::Mat& input, bool alone = false);
bool addReferances(const std::vector<cv::Mat>& referances);
void setThreshold(double threashold);
double getThreshold();
void clearReferances();
};

Binary file not shown.

After

Width:  |  Height:  |  Size: 251 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

495
SmartCrop/incbin.h Normal file
View File

@ -0,0 +1,495 @@
/* * SmartCrop - A tool for content aware croping of images
* Copyright (C) 2024 Carl Philipp Klemm
*
* This file is part of SmartCrop.
*
* SmartCrop is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SmartCrop is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file incbin.h
* @author Dale Weiler
* @brief Utility for including binary files
*
* Facilities for including binary files into the current translation unit and
* making use from them externally in other translation units.
*/
#ifndef INCBIN_HDR
#define INCBIN_HDR
#include <limits.h>
#if defined(__AVX512BW__) || \
defined(__AVX512CD__) || \
defined(__AVX512DQ__) || \
defined(__AVX512ER__) || \
defined(__AVX512PF__) || \
defined(__AVX512VL__) || \
defined(__AVX512F__)
# define INCBIN_ALIGNMENT_INDEX 6
#elif defined(__AVX__) || \
defined(__AVX2__)
# define INCBIN_ALIGNMENT_INDEX 5
#elif defined(__SSE__) || \
defined(__SSE2__) || \
defined(__SSE3__) || \
defined(__SSSE3__) || \
defined(__SSE4_1__) || \
defined(__SSE4_2__) || \
defined(__neon__) || \
defined(__ARM_NEON) || \
defined(__ALTIVEC__)
# define INCBIN_ALIGNMENT_INDEX 4
#elif ULONG_MAX != 0xffffffffu
# define INCBIN_ALIGNMENT_INDEX 3
# else
# define INCBIN_ALIGNMENT_INDEX 2
#endif
/* Lookup table of (1 << n) where `n' is `INCBIN_ALIGNMENT_INDEX' */
#define INCBIN_ALIGN_SHIFT_0 1
#define INCBIN_ALIGN_SHIFT_1 2
#define INCBIN_ALIGN_SHIFT_2 4
#define INCBIN_ALIGN_SHIFT_3 8
#define INCBIN_ALIGN_SHIFT_4 16
#define INCBIN_ALIGN_SHIFT_5 32
#define INCBIN_ALIGN_SHIFT_6 64
/* Actual alignment value */
#define INCBIN_ALIGNMENT \
INCBIN_CONCATENATE( \
INCBIN_CONCATENATE(INCBIN_ALIGN_SHIFT, _), \
INCBIN_ALIGNMENT_INDEX)
/* Stringize */
#define INCBIN_STR(X) \
#X
#define INCBIN_STRINGIZE(X) \
INCBIN_STR(X)
/* Concatenate */
#define INCBIN_CAT(X, Y) \
X ## Y
#define INCBIN_CONCATENATE(X, Y) \
INCBIN_CAT(X, Y)
/* Deferred macro expansion */
#define INCBIN_EVAL(X) \
X
#define INCBIN_INVOKE(N, ...) \
INCBIN_EVAL(N(__VA_ARGS__))
/* Variable argument count for overloading by arity */
#define INCBIN_VA_ARG_COUNTER(_1, _2, _3, N, ...) N
#define INCBIN_VA_ARGC(...) INCBIN_VA_ARG_COUNTER(__VA_ARGS__, 3, 2, 1, 0)
/* Green Hills uses a different directive for including binary data */
#if defined(__ghs__)
# if (__ghs_asm == 2)
# define INCBIN_MACRO ".file"
/* Or consider the ".myrawdata" entry in the ld file */
# else
# define INCBIN_MACRO "\tINCBIN"
# endif
#else
# define INCBIN_MACRO ".incbin"
#endif
#ifndef _MSC_VER
# define INCBIN_ALIGN \
__attribute__((aligned(INCBIN_ALIGNMENT)))
#else
# define INCBIN_ALIGN __declspec(align(INCBIN_ALIGNMENT))
#endif
#if defined(__arm__) || /* GNU C and RealView */ \
defined(__arm) || /* Diab */ \
defined(_ARM) /* ImageCraft */
# define INCBIN_ARM
#endif
#ifdef __GNUC__
/* Utilize .balign where supported */
# define INCBIN_ALIGN_HOST ".balign " INCBIN_STRINGIZE(INCBIN_ALIGNMENT) "\n"
# define INCBIN_ALIGN_BYTE ".balign 1\n"
#elif defined(INCBIN_ARM)
/*
* On arm assemblers, the alignment value is calculated as (1 << n) where `n' is
* the shift count. This is the value passed to `.align'
*/
# define INCBIN_ALIGN_HOST ".align " INCBIN_STRINGIZE(INCBIN_ALIGNMENT_INDEX) "\n"
# define INCBIN_ALIGN_BYTE ".align 0\n"
#else
/* We assume other inline assembler's treat `.align' as `.balign' */
# define INCBIN_ALIGN_HOST ".align " INCBIN_STRINGIZE(INCBIN_ALIGNMENT) "\n"
# define INCBIN_ALIGN_BYTE ".align 1\n"
#endif
/* INCBIN_CONST is used by incbin.c generated files */
#if defined(__cplusplus)
# define INCBIN_EXTERNAL extern "C"
# define INCBIN_CONST extern const
#else
# define INCBIN_EXTERNAL extern
# define INCBIN_CONST const
#endif
/**
* @brief Optionally override the linker section into which size and data is
* emitted.
*
* @warning If you use this facility, you might have to deal with
* platform-specific linker output section naming on your own.
*/
#if !defined(INCBIN_OUTPUT_SECTION)
# if defined(__APPLE__)
# define INCBIN_OUTPUT_SECTION ".const_data"
# else
# define INCBIN_OUTPUT_SECTION ".rodata"
# endif
#endif
/**
* @brief Optionally override the linker section into which data is emitted.
*
* @warning If you use this facility, you might have to deal with
* platform-specific linker output section naming on your own.
*/
#if !defined(INCBIN_OUTPUT_DATA_SECTION)
# define INCBIN_OUTPUT_DATA_SECTION INCBIN_OUTPUT_SECTION
#endif
/**
* @brief Optionally override the linker section into which size is emitted.
*
* @warning If you use this facility, you might have to deal with
* platform-specific linker output section naming on your own.
*
* @note This is useful for Harvard architectures where program memory cannot
* be directly read from the program without special instructions. With this you
* can chose to put the size variable in RAM rather than ROM.
*/
#if !defined(INCBIN_OUTPUT_SIZE_SECTION)
# define INCBIN_OUTPUT_SIZE_SECTION INCBIN_OUTPUT_SECTION
#endif
#if defined(__APPLE__)
# include "TargetConditionals.h"
# if defined(TARGET_OS_IPHONE) && !defined(INCBIN_SILENCE_BITCODE_WARNING)
# warning "incbin is incompatible with bitcode. Using the library will break upload to App Store if you have bitcode enabled. Add `#define INCBIN_SILENCE_BITCODE_WARNING` before including this header to silence this warning."
# endif
/* The directives are different for Apple branded compilers */
# define INCBIN_SECTION INCBIN_OUTPUT_SECTION "\n"
# define INCBIN_GLOBAL(NAME) ".globl " INCBIN_MANGLE INCBIN_STRINGIZE(INCBIN_PREFIX) #NAME "\n"
# define INCBIN_INT ".long "
# define INCBIN_MANGLE "_"
# define INCBIN_BYTE ".byte "
# define INCBIN_TYPE(...)
#else
# define INCBIN_SECTION ".section " INCBIN_OUTPUT_SECTION "\n"
# define INCBIN_GLOBAL(NAME) ".global " INCBIN_STRINGIZE(INCBIN_PREFIX) #NAME "\n"
# if defined(__ghs__)
# define INCBIN_INT ".word "
# else
# define INCBIN_INT ".int "
# endif
# if defined(__USER_LABEL_PREFIX__)
# define INCBIN_MANGLE INCBIN_STRINGIZE(__USER_LABEL_PREFIX__)
# else
# define INCBIN_MANGLE ""
# endif
# if defined(INCBIN_ARM)
/* On arm assemblers, `@' is used as a line comment token */
# define INCBIN_TYPE(NAME) ".type " INCBIN_STRINGIZE(INCBIN_PREFIX) #NAME ", %object\n"
# elif defined(__MINGW32__) || defined(__MINGW64__)
/* Mingw doesn't support this directive either */
# define INCBIN_TYPE(NAME)
# else
/* It's safe to use `@' on other architectures */
# define INCBIN_TYPE(NAME) ".type " INCBIN_STRINGIZE(INCBIN_PREFIX) #NAME ", @object\n"
# endif
# define INCBIN_BYTE ".byte "
#endif
/* List of style types used for symbol names */
#define INCBIN_STYLE_CAMEL 0
#define INCBIN_STYLE_SNAKE 1
/**
* @brief Specify the prefix to use for symbol names.
*
* @note By default this is "g".
*
* @code
* #define INCBIN_PREFIX incbin
* #include "incbin.h"
* INCBIN(Foo, "foo.txt");
*
* // Now you have the following symbols instead:
* // const unsigned char incbinFoo<data>[];
* // const unsigned char *const incbinFoo<end>;
* // const unsigned int incbinFoo<size>;
* @endcode
*/
#if !defined(INCBIN_PREFIX)
# define INCBIN_PREFIX g
#endif
/**
* @brief Specify the style used for symbol names.
*
* Possible options are
* - INCBIN_STYLE_CAMEL "CamelCase"
* - INCBIN_STYLE_SNAKE "snake_case"
*
* @note By default this is INCBIN_STYLE_CAMEL
*
* @code
* #define INCBIN_STYLE INCBIN_STYLE_SNAKE
* #include "incbin.h"
* INCBIN(foo, "foo.txt");
*
* // Now you have the following symbols:
* // const unsigned char <prefix>foo_data[];
* // const unsigned char *const <prefix>foo_end;
* // const unsigned int <prefix>foo_size;
* @endcode
*/
#if !defined(INCBIN_STYLE)
# define INCBIN_STYLE INCBIN_STYLE_CAMEL
#endif
/* Style lookup tables */
#define INCBIN_STYLE_0_DATA Data
#define INCBIN_STYLE_0_END End
#define INCBIN_STYLE_0_SIZE Size
#define INCBIN_STYLE_1_DATA _data
#define INCBIN_STYLE_1_END _end
#define INCBIN_STYLE_1_SIZE _size
/* Style lookup: returning identifier */
#define INCBIN_STYLE_IDENT(TYPE) \
INCBIN_CONCATENATE( \
INCBIN_STYLE_, \
INCBIN_CONCATENATE( \
INCBIN_EVAL(INCBIN_STYLE), \
INCBIN_CONCATENATE(_, TYPE)))
/* Style lookup: returning string literal */
#define INCBIN_STYLE_STRING(TYPE) \
INCBIN_STRINGIZE( \
INCBIN_STYLE_IDENT(TYPE)) \
/* Generate the global labels by indirectly invoking the macro with our style
* type and concatenating the name against them. */
#define INCBIN_GLOBAL_LABELS(NAME, TYPE) \
INCBIN_INVOKE( \
INCBIN_GLOBAL, \
INCBIN_CONCATENATE( \
NAME, \
INCBIN_INVOKE( \
INCBIN_STYLE_IDENT, \
TYPE))) \
INCBIN_INVOKE( \
INCBIN_TYPE, \
INCBIN_CONCATENATE( \
NAME, \
INCBIN_INVOKE( \
INCBIN_STYLE_IDENT, \
TYPE)))
/**
* @brief Externally reference binary data included in another translation unit.
*
* Produces three external symbols that reference the binary data included in
* another translation unit.
*
* The symbol names are a concatenation of `INCBIN_PREFIX' before *NAME*; with
* "Data", as well as "End" and "Size" after. An example is provided below.
*
* @param TYPE Optional array type. Omitting this picks a default of `unsigned char`.
* @param NAME The name given for the binary data
*
* @code
* INCBIN_EXTERN(Foo);
*
* // Now you have the following symbols:
* // extern const unsigned char <prefix>Foo<data>[];
* // extern const unsigned char *const <prefix>Foo<end>;
* // extern const unsigned int <prefix>Foo<size>;
* @endcode
*
* You may specify a custom optional data type as well as the first argument.
* @code
* INCBIN_EXTERN(custom_type, Foo);
*
* // Now you have the following symbols:
* // extern const custom_type <prefix>Foo<data>[];
* // extern const custom_type *const <prefix>Foo<end>;
* // extern const unsigned int <prefix>Foo<size>;
* @endcode
*/
#define INCBIN_EXTERN(...) \
INCBIN_CONCATENATE(INCBIN_EXTERN_, INCBIN_VA_ARGC(__VA_ARGS__))(__VA_ARGS__)
#define INCBIN_EXTERN_1(NAME, ...) \
INCBIN_EXTERN_2(unsigned char, NAME)
#define INCBIN_EXTERN_2(TYPE, NAME) \
INCBIN_EXTERNAL const INCBIN_ALIGN TYPE \
INCBIN_CONCATENATE( \
INCBIN_CONCATENATE(INCBIN_PREFIX, NAME), \
INCBIN_STYLE_IDENT(DATA))[]; \
INCBIN_EXTERNAL const INCBIN_ALIGN TYPE *const \
INCBIN_CONCATENATE( \
INCBIN_CONCATENATE(INCBIN_PREFIX, NAME), \
INCBIN_STYLE_IDENT(END)); \
INCBIN_EXTERNAL const unsigned int \
INCBIN_CONCATENATE( \
INCBIN_CONCATENATE(INCBIN_PREFIX, NAME), \
INCBIN_STYLE_IDENT(SIZE))
/**
* @brief Externally reference textual data included in another translation unit.
*
* Produces three external symbols that reference the textual data included in
* another translation unit.
*
* The symbol names are a concatenation of `INCBIN_PREFIX' before *NAME*; with
* "Data", as well as "End" and "Size" after. An example is provided below.
*
* @param NAME The name given for the textual data
*
* @code
* INCBIN_EXTERN(Foo);
*
* // Now you have the following symbols:
* // extern const char <prefix>Foo<data>[];
* // extern const char *const <prefix>Foo<end>;
* // extern const unsigned int <prefix>Foo<size>;
* @endcode
*/
#define INCTXT_EXTERN(NAME) \
INCBIN_EXTERN_2(char, NAME)
/**
* @brief Include a binary file into the current translation unit.
*
* Includes a binary file into the current translation unit, producing three symbols
* for objects that encode the data and size respectively.
*
* The symbol names are a concatenation of `INCBIN_PREFIX' before *NAME*; with
* "Data", as well as "End" and "Size" after. An example is provided below.
*
* @param TYPE Optional array type. Omitting this picks a default of `unsigned char`.
* @param NAME The name to associate with this binary data (as an identifier.)
* @param FILENAME The file to include (as a string literal.)
*
* @code
* INCBIN(Icon, "icon.png");
*
* // Now you have the following symbols:
* // const unsigned char <prefix>Icon<data>[];
* // const unsigned char *const <prefix>Icon<end>;
* // const unsigned int <prefix>Icon<size>;
* @endcode
*
* You may specify a custom optional data type as well as the first argument.
* These macros are specialized by arity.
* @code
* INCBIN(custom_type, Icon, "icon.png");
*
* // Now you have the following symbols:
* // const custom_type <prefix>Icon<data>[];
* // const custom_type *const <prefix>Icon<end>;
* // const unsigned int <prefix>Icon<size>;
* @endcode
*
* @warning This must be used in global scope
* @warning The identifiers may be different if INCBIN_STYLE is not default
*
* To externally reference the data included by this in another translation unit
* please @see INCBIN_EXTERN.
*/
#ifdef _MSC_VER
# define INCBIN(NAME, FILENAME) \
INCBIN_EXTERN(NAME)
#else
# define INCBIN(...) \
INCBIN_CONCATENATE(INCBIN_, INCBIN_VA_ARGC(__VA_ARGS__))(__VA_ARGS__)
# if defined(__GNUC__)
# define INCBIN_1(...) _Pragma("GCC error \"Single argument INCBIN not allowed\"")
# elif defined(__clang__)
# define INCBIN_1(...) _Pragma("clang error \"Single argument INCBIN not allowed\"")
# else
# define INCBIN_1(...) /* Cannot do anything here */
# endif
# define INCBIN_2(NAME, FILENAME) \
INCBIN_3(unsigned char, NAME, FILENAME)
# define INCBIN_3(TYPE, NAME, FILENAME) INCBIN_COMMON(TYPE, NAME, FILENAME, /* No terminator for binary data */)
# define INCBIN_COMMON(TYPE, NAME, FILENAME, TERMINATOR) \
__asm__(INCBIN_SECTION \
INCBIN_GLOBAL_LABELS(NAME, DATA) \
INCBIN_ALIGN_HOST \
INCBIN_MANGLE INCBIN_STRINGIZE(INCBIN_PREFIX) #NAME INCBIN_STYLE_STRING(DATA) ":\n" \
INCBIN_MACRO " \"" FILENAME "\"\n" \
TERMINATOR \
INCBIN_GLOBAL_LABELS(NAME, END) \
INCBIN_ALIGN_BYTE \
INCBIN_MANGLE INCBIN_STRINGIZE(INCBIN_PREFIX) #NAME INCBIN_STYLE_STRING(END) ":\n" \
INCBIN_BYTE "1\n" \
INCBIN_GLOBAL_LABELS(NAME, SIZE) \
INCBIN_ALIGN_HOST \
INCBIN_MANGLE INCBIN_STRINGIZE(INCBIN_PREFIX) #NAME INCBIN_STYLE_STRING(SIZE) ":\n" \
INCBIN_INT INCBIN_MANGLE INCBIN_STRINGIZE(INCBIN_PREFIX) #NAME INCBIN_STYLE_STRING(END) " - " \
INCBIN_MANGLE INCBIN_STRINGIZE(INCBIN_PREFIX) #NAME INCBIN_STYLE_STRING(DATA) "\n" \
INCBIN_ALIGN_HOST \
".text\n" \
); \
INCBIN_EXTERN(TYPE, NAME)
#endif
/**
* @brief Include a textual file into the current translation unit.
*
* This behaves the same as INCBIN except it produces char compatible arrays
* and implicitly adds a null-terminator byte, thus the size of data included
* by this is one byte larger than that of INCBIN.
*
* Includes a textual file into the current translation unit, producing three
* symbols for objects that encode the data and size respectively.
*
* The symbol names are a concatenation of `INCBIN_PREFIX' before *NAME*; with
* "Data", as well as "End" and "Size" after. An example is provided below.
*
* @param NAME The name to associate with this binary data (as an identifier.)
* @param FILENAME The file to include (as a string literal.)
*
* @code
* INCTXT(Readme, "readme.txt");
*
* // Now you have the following symbols:
* // const char <prefix>Readme<data>[];
* // const char *const <prefix>Readme<end>;
* // const unsigned int <prefix>Readme<size>;
* @endcode
*
* @warning This must be used in global scope
* @warning The identifiers may be different if INCBIN_STYLE is not default
*
* To externally reference the data included by this in another translation unit
* please @see INCBIN_EXTERN.
*/
#if defined(_MSC_VER)
# define INCTXT(NAME, FILENAME) \
INCBIN_EXTERN(NAME)
#else
# define INCTXT(NAME, FILENAME) \
INCBIN_COMMON(char, NAME, FILENAME, INCBIN_BYTE "0\n")
#endif
#endif

View File

@ -0,0 +1,128 @@
//
// SmartCrop - A tool for content aware croping of images
// Copyright (C) 2024 Carl Philipp Klemm
//
// This file is part of SmartCrop.
//
// SmartCrop is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// SmartCrop is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
//
#include "intelligentroi.h"
#include <opencv2/imgproc.hpp>
#include "utils.h"
#include "log.h"
bool InteligentRoi::compPointPrio(const std::pair<cv::Point2i, int>& a, const std::pair<cv::Point2i, int>& b, const cv::Point2i& center)
{
if(a.second != b.second)
return a.second > b.second;
double distA = pointDist(a.first, center);
double distB = pointDist(b.first, center);
return distA < distB;
}
void InteligentRoi::slideRectToPoint(cv::Rect& rect, const cv::Point2i& point)
{
if(!pointInRect(point, rect))
{
if(point.x < rect.x)
rect.x = point.x;
else if(point.x > rect.x+rect.width)
rect.x = point.x-rect.width;
if(point.y < rect.y)
rect.y = point.y;
else if(point.y > rect.y+rect.height)
rect.y = point.y-rect.height;
}
}
cv::Rect InteligentRoi::maxRect(bool& incompleate, const cv::Size2i& imageSize, std::vector<std::pair<cv::Point2i, int>> mustInclude)
{
incompleate = false;
int diameter = std::min(imageSize.height, imageSize.width);
cv::Point2i point(imageSize.width/2, imageSize.height/2);
cv::Rect candiate(point.x-diameter/2, point.y-diameter/2, diameter, diameter);
std::sort(mustInclude.begin(), mustInclude.end(),
[&point](const std::pair<cv::Point2i, int>& a, const std::pair<cv::Point2i, int>& b){return compPointPrio(a, b, point);});
while(true)
{
cv::Rect includeRect = rectFromPoints(mustInclude);
if(includeRect.width-2 > diameter || includeRect.height-2 > diameter)
{
incompleate = true;
slideRectToPoint(candiate, mustInclude.back().first);
mustInclude.pop_back();
Log(Log::DEBUG)<<"cant fill";
for(const std::pair<cv::Point2i, int>& mipoint : mustInclude)
Log(Log::DEBUG)<<mipoint.first<<' '<<pointDist(mipoint.first, point)<<' '<<mipoint.second;
}
else
{
break;
}
}
for(const std::pair<cv::Point2i, int>& includePoint : mustInclude)
slideRectToPoint(candiate, includePoint.first);
if(candiate.x < 0)
candiate.x = 0;
if(candiate.y < 0)
candiate.y = 0;
if(candiate.x+candiate.width > imageSize.width)
candiate.width = imageSize.width-candiate.x;
if(candiate.y+candiate.height > imageSize.height)
candiate.height = imageSize.height-candiate.y;
return candiate;
}
InteligentRoi::InteligentRoi(const Yolo& yolo)
{
personId = yolo.getClassForStr("person");
}
bool InteligentRoi::getCropRectangle(cv::Rect& out, const std::vector<Yolo::Detection>& detections, const cv::Size2i& imageSize)
{
std::vector<std::pair<cv::Point2i, int>> corners;
for(size_t i = 0; i < detections.size(); ++i)
{
int priority = detections[i].priority;
if(detections[i].class_id == personId)
{
corners.push_back({detections[i].box.tl()+cv::Point2i(detections[i].box.width/2, 0), priority+2});
corners.push_back({detections[i].box.tl(), priority+1});
corners.push_back({detections[i].box.br(), priority});
corners.push_back({detections[i].box.tl()+cv::Point2i(detections[i].box.width, 0), priority+1});
corners.push_back({detections[i].box.br()+cv::Point2i(0-detections[i].box.width, 0), priority});
}
else
{
corners.push_back({detections[i].box.tl(), priority});
corners.push_back({detections[i].box.br(), priority});
corners.push_back({detections[i].box.tl()+cv::Point2i(detections[i].box.width, 0), priority});
corners.push_back({detections[i].box.br()+cv::Point2i(0-detections[i].box.width, 0), priority});
}
}
bool incompleate;
out = maxRect(incompleate, imageSize, corners);
return incompleate;
}

View File

@ -0,0 +1,37 @@
/* * SmartCrop - A tool for content aware croping of images
* Copyright (C) 2024 Carl Philipp Klemm
*
* This file is part of SmartCrop.
*
* SmartCrop is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SmartCrop is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <opencv2/imgproc.hpp>
#include "yolo.h"
class InteligentRoi
{
private:
int personId;
static bool compPointPrio(const std::pair<cv::Point2i, int>& a, const std::pair<cv::Point2i, int>& b, const cv::Point2i& center);
static void slideRectToPoint(cv::Rect& rect, const cv::Point2i& point);
static cv::Rect maxRect(bool& incompleate, const cv::Size2i& imageSize, std::vector<std::pair<cv::Point2i, int>> mustInclude = {});
public:
InteligentRoi(const Yolo& yolo);
bool getCropRectangle(cv::Rect& out, const std::vector<Yolo::Detection>& detections, const cv::Size2i& imageSize);
};

63
SmartCrop/log.cpp Normal file
View File

@ -0,0 +1,63 @@
/**
* Lubricant Detecter
* Copyright (C) 2021 Carl Klemm
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 3 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "log.h"
Log::Log(Level type, bool endlineI): endline(endlineI)
{
msglevel = type;
if(headers)
{
operator << ("["+getLabel(type)+"] ");
}
}
Log::~Log()
{
if(opened && endline)
{
std::cout<<'\n';
}
opened = false;
}
std::string Log::getLabel(Level level)
{
std::string label;
switch(level)
{
case DEBUG:
label = "DEBUG";
break;
case INFO:
label = "INFO ";
break;
case WARN:
label = "WARN ";
break;
case ERROR:
label = "ERROR";
break;
}
return label;
}
bool Log::headers = false;
Log::Level Log::level = WARN;

64
SmartCrop/log.h Normal file
View File

@ -0,0 +1,64 @@
/**
* eisgenerator
* Copyright (C) 2021 Carl Klemm
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 3 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#pragma once
#include <iostream>
#include <string>
class Log
{
public:
enum Level
{
DEBUG,
INFO,
WARN,
ERROR
};
private:
bool opened = false;
Level msglevel = DEBUG;
bool endline = true;
std::string getLabel(Level level);
public:
static bool headers;
static Level level;
Log() {}
Log(Level type, bool endlineI = true);
~Log();
template<class T> Log &operator<<(const T &msg)
{
if(msglevel >= level)
{
if(msglevel == ERROR)
std::cerr<<msg;
else
std::cout<<msg;
opened = true;
}
return *this;
}
};

460
SmartCrop/main.cpp Normal file
View File

@ -0,0 +1,460 @@
//
// SmartCrop - A tool for content aware croping of images
// Copyright (C) 2024 Carl Philipp Klemm
//
// This file is part of SmartCrop.
//
// SmartCrop is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// SmartCrop is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
//
#include <filesystem>
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/core/types.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <algorithm>
#include <execution>
#include <string>
#include <vector>
#include <numeric>
#include "yolo.h"
#include "log.h"
#include "options.h"
#include "utils.h"
#include "intelligentroi.h"
#include "seamcarving.h"
#include "facerecognizer.h"
const Yolo::Detection* pointInDetectionHoriz(int x, const std::vector<Yolo::Detection>& detections, const Yolo::Detection* ignore = nullptr)
{
const Yolo::Detection* inDetection = nullptr;
for(const Yolo::Detection& detection : detections)
{
if(ignore && ignore == &detection)
continue;
if(detection.box.x <= x && detection.box.x+detection.box.width >= x)
{
if(!inDetection || detection.box.br().x > inDetection->box.br().x)
inDetection = &detection;
}
}
return inDetection;
}
bool findRegionEndpointHoriz(int& x, const std::vector<Yolo::Detection>& detections, int imgSizeX)
{
const Yolo::Detection* inDetection = pointInDetectionHoriz(x, detections);
Log(Log::DEBUG, false)<<__func__<<" point "<<x;
if(!inDetection)
{
const Yolo::Detection* closest = nullptr;
for(const Yolo::Detection& detection : detections)
{
if(detection.box.x > x)
{
if(closest == nullptr || detection.box.x-x > closest->box.x-x)
closest = &detection;
}
}
if(closest)
x = closest->box.x;
else
x = imgSizeX;
Log(Log::DEBUG)<<" is not in any box and will be moved to "<<x<<" where the closest box ("<<(closest ? closest->className : "null")<<") is";
return false;
}
else
{
x = inDetection->box.br().x;
Log(Log::DEBUG, false)<<" is in a box and will be moved to its end "<<x<<" where ";
const Yolo::Detection* candidateDetection = pointInDetectionHoriz(x, detections, inDetection);
if(candidateDetection && candidateDetection->box.br().x > x)
{
Log(Log::DEBUG)<<"it is again in a box";
return findRegionEndpointHoriz(x, detections, imgSizeX);
}
else
{
Log(Log::DEBUG)<<"it is not in a box";
return true;
}
}
}
std::vector<std::pair<cv::Mat, bool>> cutImageIntoHorzRegions(cv::Mat& image, const std::vector<Yolo::Detection>& detections)
{
std::vector<std::pair<cv::Mat, bool>> out;
std::cout<<__func__<<' '<<image.cols<<'x'<<image.rows<<std::endl;
for(int x = 0; x < image.cols; ++x)
{
int start = x;
bool frozen = findRegionEndpointHoriz(x, detections, image.cols);
int width = x-start;
if(x < image.cols)
++width;
cv::Rect rect(start, 0, width, image.rows);
Log(Log::DEBUG)<<__func__<<" region\t"<<rect;
cv::Mat slice = image(rect);
out.push_back({slice, frozen});
}
return out;
}
cv::Mat assembleFromSlicesHoriz(const std::vector<std::pair<cv::Mat, bool>>& slices)
{
assert(!slices.empty());
int cols = 0;
for(const std::pair<cv::Mat, bool>& slice : slices)
cols += slice.first.cols;
cv::Mat image(cols, slices[0].first.rows, slices[0].first.type());
Log(Log::DEBUG)<<__func__<<' '<<image.size()<<' '<<cols<<' '<<slices[0].first.rows;
int col = 0;
for(const std::pair<cv::Mat, bool>& slice : slices)
{
cv::Rect rect(col, 0, slice.first.cols, slice.first.rows);
Log(Log::DEBUG)<<__func__<<' '<<rect;
slice.first.copyTo(image(rect));
col += slice.first.cols-1;
}
return image;
}
void transposeRect(cv::Rect& rect)
{
int x = rect.x;
rect.x = rect.y;
rect.y = x;
int width = rect.width;
rect.width = rect.height;
rect.height = width;
}
bool seamCarveResize(cv::Mat& image, std::vector<Yolo::Detection> detections, double targetAspectRatio = 1.0)
{
detections.erase(std::remove_if(detections.begin(), detections.end(), [](const Yolo::Detection& detection){return detection.priority < 3;}), detections.end());
double aspectRatio = image.cols/static_cast<double>(image.rows);
Log(Log::DEBUG)<<"Image size "<<image.size()<<" aspect ratio "<<aspectRatio<<" target aspect ratio "<<targetAspectRatio;
bool vertical = false;
if(aspectRatio > targetAspectRatio)
vertical = true;
int requiredLines = 0;
if(!vertical)
requiredLines = image.rows*targetAspectRatio - image.cols;
else
requiredLines = image.cols/targetAspectRatio - image.rows;
Log(Log::DEBUG)<<__func__<<' '<<requiredLines<<" lines are required in "<<(vertical ? "vertical" : "horizontal")<<" direction";
if(vertical)
{
cv::transpose(image, image);
for(Yolo::Detection& detection : detections)
transposeRect(detection.box);
}
std::vector<std::pair<cv::Mat, bool>> slices = cutImageIntoHorzRegions(image, detections);
Log(Log::DEBUG)<<"Image has "<<slices.size()<<" slices:";
int totalResizableSize = 0;
for(const std::pair<cv::Mat, bool>& slice : slices)
{
Log(Log::DEBUG)<<"a "<<(slice.second ? "frozen" : "unfrozen")<<" slice of size "<<slice.first.cols;
if(!slice.second)
totalResizableSize += slice.first.cols;
}
if(totalResizableSize < requiredLines+1)
{
Log(Log::WARN)<<"Unable to seam carve as there are only "<<totalResizableSize<<" unfrozen cols";
if(vertical)
cv::transpose(image, image);
return false;
}
std::vector<int> seamsForSlice(slices.size(), 0);
for(size_t i = 0; i < slices.size(); ++i)
{
if(!slices[i].second)
seamsForSlice[i] = (static_cast<double>(slices[i].first.cols)/totalResizableSize)*requiredLines;
}
int residual = requiredLines - std::accumulate(seamsForSlice.begin(), seamsForSlice.end(), decltype(seamsForSlice)::value_type(0));;
for(ssize_t i = slices.size()-1; i >= 0; --i)
{
if(!slices[i].second)
{
seamsForSlice[i] += residual;
break;
}
}
for(size_t i = 0; i < slices.size(); ++i)
{
if(seamsForSlice[i] != 0)
{
bool ret = SeamCarving::strechImage(slices[i].first, seamsForSlice[i], true);
if(!ret)
{
if(vertical)
transpose(image, image);
return false;
}
}
}
image = assembleFromSlicesHoriz(slices);
if(vertical)
cv::transpose(image, image);
return true;
}
void drawDebugInfo(cv::Mat &image, const cv::Rect& rect, const std::vector<Yolo::Detection>& detections)
{
for(const Yolo::Detection& detection : detections)
{
cv::rectangle(image, detection.box, detection.color, 3);
std::string label = detection.className + ' ' + std::to_string(detection.confidence).substr(0, 4) + ' ' + std::to_string(detection.priority);
cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_DUPLEX, 1, 1, 0);
cv::Rect textBox(detection.box.x, detection.box.y - 40, labelSize.width + 10, labelSize.height + 20);
cv::rectangle(image, textBox, detection.color, cv::FILLED);
cv::putText(image, label, cv::Point(detection.box.x + 5, detection.box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 1, 0);
}
cv::rectangle(image, rect, cv::Scalar(0, 0, 255), 8);
}
static void reduceSize(cv::Mat& image, const cv::Size& targetSize)
{
int longTargetSize = std::max(targetSize.width, targetSize.height)*2;
if(std::max(image.cols, image.rows) > longTargetSize)
{
if(image.cols > image.rows)
{
double ratio = static_cast<double>(longTargetSize)/image.cols;
cv::resize(image, image, {longTargetSize, static_cast<int>(image.rows*ratio)}, 0, 0, ratio < 1 ? cv::INTER_AREA : cv::INTER_CUBIC);
}
else
{
double ratio = static_cast<double>(longTargetSize)/image.rows;
cv::resize(image, image, {static_cast<int>(image.cols*ratio), longTargetSize}, 0, 0, ratio < 1 ? cv::INTER_AREA : cv::INTER_CUBIC);
}
}
}
void pipeline(const std::filesystem::path& path, const Config& config, Yolo& yolo, FaceRecognizer* recognizer,
std::mutex& reconizerMutex, const std::filesystem::path& debugOutputPath)
{
InteligentRoi intRoi(yolo);
cv::Mat image = cv::imread(path);
if(!image.data)
{
Log(Log::WARN)<<"could not load image "<<path<<" skipping";
return;
}
reduceSize(image, config.targetSize);
std::vector<Yolo::Detection> detections = yolo.runInference(image);
Log(Log::DEBUG)<<"Got "<<detections.size()<<" detections for "<<path;
for(Yolo::Detection& detection : detections)
{
bool hasmatch = false;
if(recognizer && detection.className == "person")
{
cv::Mat person = image(detection.box);
reconizerMutex.lock();
FaceRecognizer::Detection match = recognizer->isMatch(person);
reconizerMutex.unlock();
if(match.person >= 0)
{
detection.priority += 10;
hasmatch = true;
detections.push_back({0, "Face", match.confidence, 20, {255, 0, 0}, match.rect});
}
}
Log(Log::DEBUG)<<detection.class_id<<": "<<detection.className<<" at "<<detection.box<<" with prio "<<detection.priority<<(hasmatch ? " has match" : "");
}
cv::Rect crop;
bool incompleate = intRoi.getCropRectangle(crop, detections, image.size());
if(config.seamCarving && incompleate)
{
bool ret = seamCarveResize(image, detections, config.targetSize.aspectRatio());
if(ret && image.size().aspectRatio() != config.targetSize.aspectRatio())
{
detections = yolo.runInference(image);
}
}
cv::Mat croppedImage;
if(image.size().aspectRatio() != config.targetSize.aspectRatio() && incompleate)
{
intRoi.getCropRectangle(crop, detections, image.size());
if(config.debug)
{
cv::Mat debugImage = image.clone();
drawDebugInfo(debugImage, crop, detections);
bool ret = cv::imwrite(debugOutputPath/path.filename(), debugImage);
if(!ret)
Log(Log::WARN)<<"could not save debug image to "<<debugOutputPath/path.filename()<<" skipping";
}
croppedImage = image(crop);
}
else if(!incompleate)
{
croppedImage = image(crop);
}
else
{
croppedImage = image;
}
cv::Mat resizedImage;
cv::resize(croppedImage, resizedImage, config.targetSize, 0, 0, cv::INTER_CUBIC);
bool ret = cv::imwrite(config.outputDir/path.filename(), resizedImage);
if(!ret)
Log(Log::WARN)<<"could not save image to "<<config.outputDir/path.filename()<<" skipping";
}
void threadFn(const std::vector<std::filesystem::path>& images, const Config& config, FaceRecognizer* recognizer,
std::mutex& reconizerMutex, const std::filesystem::path& debugOutputPath)
{
Yolo yolo(config.modelPath, {640, 480}, config.classesPath, false);
for(std::filesystem::path path : images)
pipeline(path, config, yolo, recognizer, reconizerMutex, debugOutputPath);
}
template<typename T>
std::vector<std::vector<T>> splitVector(const std::vector<T>& vec, size_t parts)
{
std::vector<std::vector<T>> out;
size_t length = vec.size()/parts;
size_t remain = vec.size() % parts;
size_t begin = 0;
size_t end = 0;
for (size_t i = 0; i < std::min(parts, vec.size()); ++i)
{
end += (remain > 0) ? (length + !!(remain--)) : length;
out.push_back(std::vector<T>(vec.begin() + begin, vec.begin() + end));
begin = end;
}
return out;
}
int main(int argc, char* argv[])
{
Log::level = Log::INFO;
Config config;
argp_parse(&argp, argc, argv, 0, 0, &config);
if(config.outputDir.empty())
{
Log(Log::ERROR)<<"a output path \"-o\" is required";
return 1;
}
if(config.imagePaths.empty())
{
Log(Log::ERROR)<<"at least one input image or directory is required";
return 1;
}
std::vector<std::filesystem::path> imagePaths;
for(const std::filesystem::path& path : config.imagePaths)
getImageFiles(path, imagePaths);
Log(Log::DEBUG)<<"Images:";
for(const::std::filesystem::path& path: imagePaths)
Log(Log::DEBUG)<<path;
if(imagePaths.empty())
{
Log(Log::ERROR)<<"no image was found\n";
return 1;
}
if(!std::filesystem::exists(config.outputDir))
{
if(!std::filesystem::create_directory(config.outputDir))
{
Log(Log::ERROR)<<"could not create directory at "<<config.outputDir;
return 1;
}
}
std::filesystem::path debugOutputPath(config.outputDir/"debug");
if(config.debug)
{
if(!std::filesystem::exists(debugOutputPath))
std::filesystem::create_directory(debugOutputPath);
}
FaceRecognizer* recognizer = nullptr;
std::mutex recognizerMutex;
if(!config.focusPersonImage.empty())
{
cv::Mat personImage = cv::imread(config.focusPersonImage);
if(personImage.empty())
{
Log(Log::ERROR)<<"Could not load image from "<<config.focusPersonImage;
return 1;
}
recognizer = new FaceRecognizer();
recognizer->addReferances({personImage});
recognizer->setThreshold(config.threshold);
}
std::vector<std::thread> threads;
std::vector<std::vector<std::filesystem::path>> imagePathParts = splitVector(imagePaths, std::thread::hardware_concurrency());
for(size_t i = 0; i < imagePathParts.size(); ++i)
threads.push_back(std::thread(threadFn, imagePathParts[i], std::ref(config), recognizer, std::ref(recognizerMutex), std::ref(debugOutputPath)));
for(std::thread& thread : threads)
thread.join();
return 0;
}

117
SmartCrop/options.h Normal file
View File

@ -0,0 +1,117 @@
/* * SmartCrop - A tool for content aware croping of images
* Copyright (C) 2024 Carl Philipp Klemm
*
* This file is part of SmartCrop.
*
* SmartCrop is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SmartCrop is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <string>
#include <vector>
#include <argp.h>
#include <iostream>
#include <filesystem>
#include <opencv2/core/types.hpp>
#include "log.h"
const char *argp_program_version = "AIImagePreprocesses";
const char *argp_program_bug_address = "<carl@uvos.xyz>";
static char doc[] = "Application that trainsforms images into formats, sizes and aspect ratios required for ai training";
static char args_doc[] = "FILE(S)";
static struct argp_option options[] =
{
{"verbose", 'v', 0, 0, "Show debug messages" },
{"quiet", 'q', 0, 0, "only output data" },
{"model", 'm', "[FILENAME]", 0, "YoloV8 model to use for detection" },
{"classes", 'c', "[FILENAME]", 0, "classes text file to use" },
{"out", 'o', "[DIRECTORY]", 0, "directory whre images are to be saved" },
{"debug", 'd', 0, 0, "output debug images" },
{"seam-carving", 's', 0, 0, "use seam carving to change image aspect ratio instead of croping"},
{"size", 'z', "[PIXELS]", 0, "target output size, default: 512"},
{"focus-person", 'f', "[FILENAME]", 0, "a file name to an image of a person that the crop should focus on"},
{"person-threshold", 't', "[NUMBER]", 0, "the threshold at witch to consider a person matched, defaults to 0.363"},
{0}
};
struct Config
{
std::vector<std::filesystem::path> imagePaths;
std::filesystem::path modelPath;
std::filesystem::path classesPath;
std::filesystem::path outputDir;
std::filesystem::path focusPersonImage;
bool seamCarving = false;
bool debug = false;
double threshold = 0.363;
cv::Size targetSize = cv::Size(512, 512);
};
static error_t parse_opt (int key, char *arg, struct argp_state *state)
{
Config *config = reinterpret_cast<Config*>(state->input);
try
{
switch (key)
{
case 'q':
Log::level = Log::ERROR;
break;
case 'v':
Log::level = Log::DEBUG;
break;
case 'm':
config->modelPath = arg;
break;
case 'c':
config->classesPath = arg;
break;
case 'd':
config->debug = true;
break;
case 'o':
config->outputDir.assign(arg);
break;
case 's':
config->seamCarving = true;
break;
case 'f':
config->focusPersonImage = arg;
break;
case 't':
config->threshold = std::atof(arg);
break;
case 'z':
{
int x = std::stoi(arg);
config->targetSize = cv::Size(x, x);
break;
}
case ARGP_KEY_ARG:
config->imagePaths.push_back(arg);
break;
default:
return ARGP_ERR_UNKNOWN;
}
}
catch(const std::invalid_argument& ex)
{
std::cout<<arg<<" passed for argument -"<<static_cast<char>(key)<<" is not a valid number.\n";
return ARGP_KEY_ERROR;
}
return 0;
}
static struct argp argp = {options, parse_opt, args_doc, doc};

35
SmartCrop/readfile.h Normal file
View File

@ -0,0 +1,35 @@
/* * SmartCrop - A tool for content aware croping of images
* Copyright (C) 2024 Carl Philipp Klemm
*
* This file is part of SmartCrop.
*
* SmartCrop is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SmartCrop is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <string>
#include <filesystem>
#include <fstream>
#include <stdexcept>
#include <sstream>
inline std::string readFile(const std::filesystem::path& path)
{
std::ifstream file(path);
if(!file.is_open())
throw std::runtime_error(std::string("could not open file ") + path.string());
std::stringstream ss;
ss<<file.rdbuf();
return ss.str();
}

376
SmartCrop/seamcarving.cpp Normal file
View File

@ -0,0 +1,376 @@
//
// SmartCrop - A tool for content aware croping of images
// Copyright (C) 2024 Carl Philipp Klemm
//
// This file is part of SmartCrop.
//
// SmartCrop is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// SmartCrop is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
//
#include "seamcarving.h"
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
#include <filesystem>
#include <cfloat>
#include <vector>
#include "log.h"
bool SeamCarving::strechImage(cv::Mat& image, int seams, bool grow, std::vector<std::vector<int>>* seamsVect)
{
cv::Mat newFrame = image.clone();
assert(!newFrame.empty());
std::vector<std::vector<int>> vecSeams;
for(int i = 0; i < seams; i++)
{
//Gradient Magnitude for intensity of image.
cv::Mat gradientMagnitude = computeGradientMagnitude(newFrame);
//Use DP to create the real energy map that is used for path calculation.
// Strictly using vertical paths for testing simplicity.
cv::Mat pathIntensityMat = computePathIntensityMat(gradientMagnitude);
if(pathIntensityMat.rows == 0 && pathIntensityMat.cols == 0)
return false;
std::vector<int> seam = getLeastImportantPath(pathIntensityMat);
vecSeams.push_back(seam);
if(seamsVect)
seamsVect->push_back(seam);
newFrame = removeLeastImportantPath(newFrame, seam);
if(newFrame.rows == 0 || newFrame.cols == 0)
return false;
}
if (grow)
{
cv::Mat growMat = image.clone();
for(size_t i = 0; i < vecSeams.size(); i++)
{
growMat = addLeastImportantPath(growMat,vecSeams[i]);
}
image = growMat;
}
else
{
image = newFrame;
}
return true;
}
bool SeamCarving::strechImageVert(cv::Mat& image, int seams, bool grow, std::vector<std::vector<int>>* seamsVect)
{
cv::transpose(image, image);
bool ret = strechImage(image, seams, grow, seamsVect);
cv::transpose(image, image);
return ret;
}
bool SeamCarving::strechImageWithSeamsImage(cv::Mat& image, cv::Mat& seamsImage, int seams, bool grow)
{
std::vector<std::vector<int>> seamsVect;
seamsImage = image.clone();
bool ret = SeamCarving::strechImage(image, seams, grow, &seamsVect);
if(!ret)
return false;
for(size_t i = 0; i < seamsVect.size(); ++i)
seamsImage = drawSeam(seamsImage, seamsVect[i]);
return true;
}
cv::Mat SeamCarving::GetEnergyImg(const cv::Mat &img)
{
// find partial derivative of x-axis and y-axis seperately
// sum up the partial derivates
float pd[] = {1, 2, 1, 0, 0, 0, -1, -2 - 1};
cv::Mat xFilter(3, 3, CV_32FC1, pd);
cv::Mat yFilter = xFilter.t();
cv::Mat grayImg;
cv::cvtColor(img, grayImg, cv::COLOR_RGBA2GRAY);
cv::Mat dxImg;
cv::Mat dyImg;
cv::filter2D(grayImg, dxImg, 0, xFilter);
cv::filter2D(grayImg, dyImg, 0, yFilter);
//cv::Mat zeroMat = cv::Mat::zeros(dxImg.rows, dxImg.cols, dxImg.type());
//cv::Mat absDxImg;
//cv::Mat absDyImg;
//cv::absdiff(dxImg, zeroMat, absDxImg);
//cv::absdiff(dyImg, zeroMat, absDyImg);
cv::Mat absDxImg = cv::abs(dxImg);
cv::Mat absDyImg = cv::abs(dyImg);
cv::Mat energyImg;
cv::add(absDxImg, absDyImg, energyImg);
return energyImg;
}
cv::Mat SeamCarving::computeGradientMagnitude(const cv::Mat &frame)
{
cv::Mat grayScale;
cv::cvtColor(frame, grayScale, cv::COLOR_RGBA2GRAY);
cv::Mat drv = cv::Mat(grayScale.size(), CV_16SC1);
cv::Mat drv32f = cv::Mat(grayScale.size(), CV_32FC1);
cv::Mat mag = cv::Mat::zeros(grayScale.size(), CV_32FC1);
Sobel(grayScale, drv, CV_16SC1, 1, 0);
drv.convertTo(drv32f, CV_32FC1);
cv::accumulateSquare(drv32f, mag);
Sobel(grayScale, drv, CV_16SC1, 0, 1);
drv.convertTo(drv32f, CV_32FC1);
cv::accumulateSquare(drv32f, mag);
cv::sqrt(mag, mag);
return mag;
}
float SeamCarving::intensity(float currIndex, int start, int end)
{
if(start < 0 || start >= end)
{
return FLT_MAX;
}
else
{
return currIndex;
}
}
cv::Mat SeamCarving::computePathIntensityMat(const cv::Mat &rawEnergyMap)
{
cv::Mat pathIntensityMap = cv::Mat(rawEnergyMap.size(), CV_32FC1);
if(rawEnergyMap.total() == 0 || pathIntensityMap.total() == 0)
{
return cv::Mat();
}
//First row of intensity paths is the same as the energy map
rawEnergyMap.row(0).copyTo(pathIntensityMap.row(0));
float max = 0;
//The rest of them use the DP calculation using the minimum of the 3 pixels above them + their own intensity.
for(int row = 1; row < pathIntensityMap.rows; row++)
{
for(int col = 0; col < pathIntensityMap.cols; col++)
{
//The initial intensity of the pixel is its raw intensity
float pixelIntensity = rawEnergyMap.at<float>(row, col);
//The minimum intensity from the current path of the 3 pixels above it is added to its intensity.
float p1 = intensity(pathIntensityMap.at<float>(row-1, col-1), col - 1, pathIntensityMap.cols);
float p2 = intensity(pathIntensityMap.at<float>(row-1, col), col, pathIntensityMap.cols);
float p3 = intensity(pathIntensityMap.at<float>(row-1, col+1), col + 1, pathIntensityMap.cols);
float minIntensity = std::min(p1, p2);
minIntensity = std::min(minIntensity, p3);
pixelIntensity += minIntensity;
max = std::max(max, pixelIntensity);
pathIntensityMap.at<float>(row, col) = pixelIntensity;
}
}
return pathIntensityMap;
}
std::vector<int> SeamCarving::getLeastImportantPath(const cv::Mat &importanceMap)
{
if(importanceMap.total() == 0)
{
return std::vector<int>();
}
//Find the beginning of the least important path. Trying an averaging approach because absolute min wasn't very reliable.
float minImportance = importanceMap.at<float>(importanceMap.rows - 1, 0);
int minCol = 0;
for (int col = 1; col < importanceMap.cols; col++)
{
float currPixel =importanceMap.at<float>(importanceMap.rows - 1, col);
if(currPixel < minImportance)
{
minCol = col;
minImportance = currPixel;
}
}
std::vector<int> leastEnergySeam(importanceMap.rows);
leastEnergySeam[importanceMap.rows-1] = minCol;
for(int row = importanceMap.rows - 2; row >= 0; row--)
{
float p1 = intensity(importanceMap.at<float>(row, minCol-1), minCol - 1, importanceMap.cols);
float p2 = intensity(importanceMap.at<float>(row, minCol), minCol, importanceMap.cols);
float p3 = intensity(importanceMap.at<float>(row, minCol+1), minCol + 1, importanceMap.cols);
//Adjust the min column for path following
if(p1 < p2 && p1 < p3)
{
minCol -= 1;
}
else if(p3 < p1 && p3 < p2)
{
minCol += 1;
}
leastEnergySeam[row] = minCol;
}
return leastEnergySeam;
}
cv::Mat SeamCarving::removeLeastImportantPath(const cv::Mat &original, const std::vector<int> &seam)
{
cv::Size orgSize = original.size();
// new mat needs to shrink by one collumn
cv::Size size = cv::Size(orgSize.width-1, orgSize.height);
cv::Mat newMat = cv::Mat(size, original.type());
for(size_t row = 0; row < seam.size(); row++)
{
removePixel(original, newMat, row, seam[row]);
}
return newMat;
}
void SeamCarving::removePixel(const cv::Mat &original, cv::Mat &outputMat, int row, int minCol)
{
int width = original.cols;
int channels = original.channels();
int originRowStart = row * channels * width;
int newRowStart = row * channels * (width - 1);
int firstNum = minCol * channels;
unsigned char *rawOrig = original.data;
unsigned char *rawOutput = outputMat.data;
//std::cout << "originRowStart: " << originRowStart << std::endl;
//std::cout << "newRowStart: " << newRowStart << std::endl;
//std::cout << "firstNum: " << firstNum << std::endl;
memcpy(rawOutput + newRowStart, rawOrig + originRowStart, firstNum);
int originRowMid = originRowStart + (minCol + 1) * channels;
int newRowMid = newRowStart + minCol * channels;
int secondNum = (width - 1) * channels - firstNum;
//std::cout << "originRowMid: " << originRowMid << std::endl;
//std::cout << "newRowMid: " << newRowMid << std::endl;
//std::cout << "secondNum: " << secondNum << std::endl;
memcpy(rawOutput + newRowMid, rawOrig + originRowMid, secondNum);
int leftPixel = minCol - 1;
int rightPixel = minCol + 1;
int byte1 = rawOrig[originRowStart + minCol * channels];
int byte2 = rawOrig[originRowStart + minCol * channels + 1];
int byte3 = rawOrig[originRowStart + minCol * channels + 2];
if (rightPixel < width)
{
int byte1R = rawOrig[originRowStart + rightPixel * channels];
int byte2R = rawOrig[originRowStart + rightPixel * channels + 1];
int byte3R = rawOrig[originRowStart + rightPixel * channels + 2];
rawOutput[newRowStart + minCol * channels] = (unsigned char)((byte1 + byte1R) / 2);
rawOutput[newRowStart + minCol * channels + 1] = (unsigned char)((byte2 + byte2R) / 2);
rawOutput[newRowStart + minCol * channels + 2] = (unsigned char)((byte3 + byte3R) / 2);
}
if(leftPixel >= 0)
{
int byte1L = rawOrig[originRowStart + leftPixel*channels];
int byte2L = rawOrig[originRowStart + leftPixel*channels+1];
int byte3L = rawOrig[originRowStart + leftPixel*channels+2];
rawOutput[newRowStart + leftPixel*channels] = (unsigned char) ((byte1 + byte1L)/2);
rawOutput[newRowStart + leftPixel*channels+1] = (unsigned char) ((byte2 + byte2L)/2);
rawOutput[newRowStart + leftPixel*channels+2] = (unsigned char) ((byte3 + byte3L)/2);
}
}
cv::Mat SeamCarving::addLeastImportantPath(const cv::Mat &original, const std::vector<int> &seam)
{
cv::Size orgSize = original.size();
// new mat needs to grow by one column
cv::Size size = cv::Size(orgSize.width+1, orgSize.height);
cv::Mat newMat = cv::Mat(size, original.type());
for(size_t row = 0; row < seam.size(); row++)
{
//std::cout << "row: " << row << ", col: " << seam[row] << std::endl;
addPixel(original, newMat, row, seam[row]);
}
return newMat;
}
void SeamCarving::addPixel(const cv::Mat &original, cv::Mat &outputMat, int row, int minCol)
{
int width = original.cols;
int channels = original.channels();
int originRowStart = row * channels * width;
int newRowStart = row * channels * (width + 1);
int firstNum = (minCol + 1) * channels;
unsigned char *rawOrig = original.data;
unsigned char *rawOutput = outputMat.data;
memcpy(rawOutput + newRowStart, rawOrig + originRowStart, firstNum);
memcpy(rawOutput + newRowStart + firstNum, rawOrig + originRowStart + firstNum, channels);
int originRowMid = originRowStart + ((minCol + 1) * channels);
int newRowMid = newRowStart + ((minCol + 2) * channels);
int secondNum = (width * channels) - firstNum;
memcpy(rawOutput + newRowMid, rawOrig + originRowMid, secondNum);
int leftPixel = minCol - 1;
int rightPixel = minCol + 1;
int byte1 = rawOrig[originRowStart + minCol * channels];
int byte2 = rawOrig[originRowStart + minCol * channels + 1];
int byte3 = rawOrig[originRowStart + minCol * channels + 2];
if (rightPixel < width)
{
int byte1R = rawOrig[originRowStart + rightPixel * channels];
int byte2R = rawOrig[originRowStart + rightPixel * channels + 1];
int byte3R = rawOrig[originRowStart + rightPixel * channels + 2];
rawOutput[newRowStart + minCol * channels] = (unsigned char)((byte1 + byte1R) / 2);
rawOutput[newRowStart + minCol * channels + 1] = (unsigned char)((byte2 + byte2R) / 2);
rawOutput[newRowStart + minCol * channels + 2] = (unsigned char)((byte3 + byte3R) / 2);
}
if(leftPixel >= 0)
{
int byte1L = rawOrig[originRowStart + leftPixel*channels];
int byte2L = rawOrig[originRowStart + leftPixel*channels+1];
int byte3L = rawOrig[originRowStart + leftPixel*channels+2];
rawOutput[newRowStart + leftPixel*channels] = (unsigned char) ((byte1 + byte1L)/2);
rawOutput[newRowStart + leftPixel*channels+1] = (unsigned char) ((byte2 + byte2L)/2);
rawOutput[newRowStart + leftPixel*channels+2] = (unsigned char) ((byte3 + byte3L)/2);
}
}
cv::Mat SeamCarving::drawSeam(const cv::Mat &frame, const std::vector<int> &seam)
{
cv::Mat retMat = frame.clone();
for(int row = 0; row < frame.rows; row++)
{
for(int col = 0; col < frame.cols; col++)
{
retMat.at<cv::Vec3b>(row, seam[row])[0] = 0;
retMat.at<cv::Vec3b>(row, seam[row])[1] = 255;
retMat.at<cv::Vec3b>(row, seam[row])[2] = 0;
}
}
return retMat;
}

43
SmartCrop/seamcarving.h Normal file
View File

@ -0,0 +1,43 @@
/* * SmartCrop - A tool for content aware croping of images
* Copyright (C) 2024 Carl Philipp Klemm
*
* This file is part of SmartCrop.
*
* SmartCrop is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SmartCrop is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <opencv2/core/core.hpp>
#include <vector>
class SeamCarving
{
private:
static cv::Mat GetEnergyImg(const cv::Mat &img);
static cv::Mat computeGradientMagnitude(const cv::Mat &frame);
static float intensity(float currIndex, int start, int end);
static cv::Mat computePathIntensityMat(const cv::Mat &rawEnergyMap);
static std::vector<int> getLeastImportantPath(const cv::Mat &importanceMap);
static cv::Mat removeLeastImportantPath(const cv::Mat &original, const std::vector<int> &seam);
static void removePixel(const cv::Mat &original, cv::Mat &outputMap, int row, int minCol);
static cv::Mat addLeastImportantPath(const cv::Mat &original, const std::vector<int> &seam);
static void addPixel(const cv::Mat &original, cv::Mat &outputMat, int row, int minCol);
static cv::Mat drawSeam(const cv::Mat &frame, const std::vector<int> &seam);
public:
static bool strechImage(cv::Mat& image, int seams, bool grow, std::vector<std::vector<int>>* seamsVect = nullptr);
static bool strechImageVert(cv::Mat& image, int seams, bool grow, std::vector<std::vector<int>>* seamsVect = nullptr);
static bool strechImageWithSeamsImage(cv::Mat& image, cv::Mat& seamsImage, int seams, bool grow);
};

46
SmartCrop/tokenize.cpp Normal file
View File

@ -0,0 +1,46 @@
//
// SmartCrop - A tool for content aware croping of images
// Copyright (C) 2024 Carl Philipp Klemm
//
// This file is part of SmartCrop.
//
// SmartCrop is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// SmartCrop is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
//
#include "tokenize.h"
std::vector<std::string> tokenizeBinaryIgnore(const std::string& str, const char delim, const char ignoreBraket, const char escapeChar)
{
std::vector<std::string> tokens;
std::string token;
bool inBaracket = false;
for(size_t i = 0; i < str.size(); ++i)
{
if(str[i] == delim && !inBaracket && (i == 0 || str[i-1] != escapeChar))
{
tokens.push_back(token);
token.clear();
}
else
{
token.push_back(str[i]);
}
if(ignoreBraket == str[i])
inBaracket = !inBaracket;
}
if(!inBaracket)
tokens.push_back(token);
return tokens;
}

26
SmartCrop/tokenize.h Normal file
View File

@ -0,0 +1,26 @@
/* * SmartCrop - A tool for content aware croping of images
* Copyright (C) 2024 Carl Philipp Klemm
*
* This file is part of SmartCrop.
*
* SmartCrop is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SmartCrop is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <string>
#include <vector>
std::vector<std::string> tokenizeBinaryIgnore(const std::string& str, const char delim, const char ignoreBraket = '\0',
const char escapeChar = '\0');

80
SmartCrop/utils.cpp Normal file
View File

@ -0,0 +1,80 @@
//
// SmartCrop - A tool for content aware croping of images
// Copyright (C) 2024 Carl Philipp Klemm
//
// This file is part of SmartCrop.
//
// SmartCrop is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// SmartCrop is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
//
#include "utils.h"
#include <filesystem>
#include <vector>
#include <opencv2/imgproc.hpp>
bool isImagePath(const std::filesystem::path& path)
{
return std::filesystem::is_regular_file(path) && (path.extension() == ".png" || path.extension() == ".jpg" || path.extension() == ".jpeg");
}
void getImageFiles(const std::filesystem::path& path, std::vector<std::filesystem::path>& paths)
{
if(isImagePath(path))
{
paths.push_back(path);
}
else if(std::filesystem::is_directory(path))
{
for(const std::filesystem::directory_entry& dirent : std::filesystem::directory_iterator(path))
{
if(std::filesystem::is_directory(dirent.path()))
getImageFiles(dirent.path(), paths);
else if(isImagePath(dirent.path()))
paths.push_back(dirent.path());
}
}
}
cv::Rect rectFromPoints(const std::vector<std::pair<cv::Point, int>>& points)
{
int left = std::numeric_limits<int>::max();
int right = std::numeric_limits<int>::min();
int top = std::numeric_limits<int>::max();
int bottom = std::numeric_limits<int>::min();
for(const std::pair<cv::Point, int>& point : points)
{
left = point.first.x < left ? point.first.x : left;
right = point.first.x > right ? point.first.x : right;
top = point.first.y < top ? point.first.y : top;
bottom = point.first.y > bottom ? point.first.y : bottom;
}
return cv::Rect(left, top, right-left, bottom-top);
}
double pointDist(const cv::Point2i& pointA, const cv::Point2i& pointB)
{
cv::Vec2i a(pointA.x, pointA.y);
cv::Vec2i b(pointB.x, pointB.y);
return cv::norm(a-b);
}
bool pointInRect(const cv::Point2i& point, const cv::Rect& rect)
{
return point.x >= rect.x && point.x <= rect.x+rect.width &&
point.y >= rect.y && point.y <= rect.y+rect.height;
}

34
SmartCrop/utils.h Normal file
View File

@ -0,0 +1,34 @@
/* * SmartCrop - A tool for content aware croping of images
* Copyright (C) 2024 Carl Philipp Klemm
*
* This file is part of SmartCrop.
*
* SmartCrop is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SmartCrop is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <filesystem>
#include <vector>
#include <opencv2/imgproc.hpp>
bool isImagePath(const std::filesystem::path& path);
void getImageFiles(const std::filesystem::path& path, std::vector<std::filesystem::path>& paths);
cv::Rect rectFromPoints(const std::vector<std::pair<cv::Point, int>>& points);
double pointDist(const cv::Point2i& pointA, const cv::Point2i& pointB);
bool pointInRect(const cv::Point2i& point, const cv::Rect& rect);

278
SmartCrop/yolo.cpp Normal file
View File

@ -0,0 +1,278 @@
//
// SmartCrop - A tool for content aware croping of images
// Copyright (C) 2024 Carl Philipp Klemm
//
// This file is part of SmartCrop.
//
// SmartCrop is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// SmartCrop is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
//
#include <opencv2/dnn/dnn.hpp>
#include <algorithm>
#include <string>
#include <stdexcept>
#include "yolo.h"
#include "readfile.h"
#include "tokenize.h"
#include "log.h"
#define INCBIN_PREFIX r
#include "incbin.h"
INCTXT(defaultClasses, WEIGHT_DIR "/classes.txt");
INCBIN(defaultModel, WEIGHT_DIR "/yolov8x.onnx");
Yolo::Yolo(const std::filesystem::path &onnxModelPath, const cv::Size &modelInputShape,
const std::filesystem::path& classesTxtFilePath, bool runWithOCl)
{
modelPath = onnxModelPath;
modelShape = modelInputShape;
if(classesTxtFilePath.empty())
{
Log(Log::INFO)<<"Using builtin classes";
loadClasses(rdefaultClassesData);
}
else
{
std::string classesStr = readFile(classesTxtFilePath);
loadClasses(classesStr);
}
if(!modelPath.empty())
{
net = cv::dnn::readNetFromONNX(modelPath);
}
else
{
Log(Log::INFO)<<"Using builtin yolo model";
net = cv::dnn::readNetFromONNX((const char*)rdefaultModelData, rdefaultModelSize);
}
if(runWithOCl)
{
net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
net.setPreferableTarget(cv::dnn::DNN_TARGET_OPENCL);
}
else
{
net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
}
}
std::vector<Yolo::Detection> Yolo::runInference(const cv::Mat &input)
{
cv::Mat modelInput = input;
if (letterBoxForSquare && modelShape.width == modelShape.height)
modelInput = formatToSquare(modelInput);
cv::Mat blob;
cv::dnn::blobFromImage(modelInput, blob, 1.0/255.0, modelShape, cv::Scalar(), true, false);
net.setInput(blob);
std::vector<cv::Mat> outputs;
net.forward(outputs, net.getUnconnectedOutLayersNames());
int rows = outputs[0].size[1];
int dimensions = outputs[0].size[2];
bool yolov8 = false;
// yolov5 has an output of shape (batchSize, 25200, 85) (Num classes + box[x,y,w,h] + confidence[c])
// yolov8 has an output of shape (batchSize, 84, 8400) (Num classes + box[x,y,w,h])
if (dimensions > rows) // Check if the shape[2] is more than shape[1] (yolov8)
{
yolov8 = true;
rows = outputs[0].size[2];
dimensions = outputs[0].size[1];
outputs[0] = outputs[0].reshape(1, dimensions);
cv::transpose(outputs[0], outputs[0]);
}
float *data = (float *)outputs[0].data;
float x_factor = modelInput.cols / modelShape.width;
float y_factor = modelInput.rows / modelShape.height;
std::vector<int> class_ids;
std::vector<float> confidences;
std::vector<cv::Rect> boxes;
for (int i = 0; i < rows; ++i)
{
if (yolov8)
{
float *classes_scores = data+4;
cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
cv::Point class_id;
double maxClassScore;
minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
if (maxClassScore > modelScoreThreshold)
{
confidences.push_back(maxClassScore);
class_ids.push_back(class_id.x);
float x = data[0];
float y = data[1];
float w = data[2];
float h = data[3];
int left = int((x - 0.5 * w) * x_factor);
int top = int((y - 0.5 * h) * y_factor);
int width = int(w * x_factor);
int height = int(h * y_factor);
boxes.push_back(cv::Rect(left, top, width, height));
}
}
else // yolov5
{
float confidence = data[4];
if (confidence >= modelConfidenceThreshold)
{
float *classes_scores = data+5;
cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
cv::Point class_id;
double max_class_score;
minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
if (max_class_score > modelScoreThreshold)
{
confidences.push_back(confidence);
class_ids.push_back(class_id.x);
float x = data[0];
float y = data[1];
float w = data[2];
float h = data[3];
int left = int((x - 0.5 * w) * x_factor);
int top = int((y - 0.5 * h) * y_factor);
int width = int(w * x_factor);
int height = int(h * y_factor);
boxes.push_back(cv::Rect(left, top, width, height));
}
}
}
data += dimensions;
}
std::vector<int> nms_result;
cv::dnn::NMSBoxes(boxes, confidences, modelScoreThreshold, modelNMSThreshold, nms_result);
std::vector<Yolo::Detection> detections{};
for(unsigned long i = 0; i < nms_result.size(); ++i)
{
int idx = nms_result[i];
Yolo::Detection result;
result.class_id = class_ids[idx];
result.confidence = confidences[idx];
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int> dis(100, 255);
result.color = cv::Scalar(dis(gen),
dis(gen),
dis(gen));
result.className = classes[result.class_id].first;
result.priority = classes[result.class_id].second;
clampBox(boxes[idx], input.size());
result.box = boxes[idx];
detections.push_back(result);
}
return detections;
}
void Yolo::clampBox(cv::Rect& box, const cv::Size& size)
{
if(box.x < 0)
{
box.width += box.x;
box.x = 0;
}
if(box.y < 0)
{
box.height += box.y;
box.y = 0;
}
if(box.x+box.width > size.width)
box.width = size.width - box.x;
if(box.y+box.height > size.height)
box.height = size.height - box.y;
}
void Yolo::loadClasses(const std::string& classesStr)
{
std::vector<std::string> candidateClasses = tokenizeBinaryIgnore(classesStr, '\n', '"', '\\');
classes.clear();
for(std::string& instance : candidateClasses)
{
if(instance.size() < 2)
continue;
std::vector<std::string> tokens = tokenizeBinaryIgnore(instance, ',', '"', '\\');
if(*tokens[0].begin() == '"')
instance.erase(tokens[0].begin());
if(tokens[0].back() == '"')
tokens[0].pop_back();
int priority = -1;
if(tokens.size() > 1)
{
try
{
priority = std::stoi(tokens[1]);
}
catch(const std::invalid_argument& err)
{
Log(Log::WARN)<<"unable to get priority for class "<<tokens[0]<<' '<<err.what();
}
}
classes.push_back({tokens[0], priority});
}
}
cv::Mat Yolo::formatToSquare(const cv::Mat &source)
{
int col = source.cols;
int row = source.rows;
int _max = MAX(col, row);
cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3);
source.copyTo(result(cv::Rect(0, 0, col, row)));
return result;
}
int Yolo::getClassForStr(const std::string& str) const
{
for(size_t i = 0; i < classes.size(); ++i)
{
if(classes[i].first == str)
return i;
}
return -1;
}

65
SmartCrop/yolo.h Normal file
View File

@ -0,0 +1,65 @@
/* * SmartCrop - A tool for content aware croping of images
* Copyright (C) 2024 Carl Philipp Klemm
*
* This file is part of SmartCrop.
*
* SmartCrop is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SmartCrop is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <fstream>
#include <vector>
#include <string>
#include <random>
#include <filesystem>
#include <opencv2/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
class Yolo
{
public:
struct Detection
{
int class_id = 0;
std::string className;
float confidence = 0.0;
int priority = -1;
cv::Scalar color;
cv::Rect box;
};
private:
static constexpr float modelConfidenceThreshold = 0.25;
static constexpr float modelScoreThreshold = 0.45;
static constexpr float modelNMSThreshold = 0.50;
std::string modelPath;
std::vector<std::pair<std::string, int>> classes;
cv::Size2f modelShape;
bool letterBoxForSquare = true;
cv::dnn::Net net;
void loadClasses(const std::string& classes);
void loadOnnxNetwork(const std::filesystem::path& path);
cv::Mat formatToSquare(const cv::Mat &source);
static void clampBox(cv::Rect& box, const cv::Size& size);
public:
Yolo(const std::filesystem::path &onnxModelPath = "", const cv::Size& modelInputShape = {640, 480},
const std::filesystem::path& classesTxtFilePath = "", bool runWithOCl = true);
std::vector<Detection> runInference(const cv::Mat &input);
int getClassForStr(const std::string& str) const;
};

80
Weights/classes.txt Normal file
View File

@ -0,0 +1,80 @@
person, 10
bicycle, 4
car, 3
motorcycle, 4
airplane, 4
bus, 4
train, 4
truck, 3
boat, 4
traffic light, 1
fire hydrant, 1
stop sign, 1
parking meter, 1
bench, 2
bird, 5
cat, 6
dog, 5
horse, 4
sheep, 5
cow, 4
elephant, 5
bear, 5
zebra, 5
giraffe, 5
backpack, 3
umbrella, 3
handbag, 3
tie, 3
suitcase, 2
frisbee, 3
skis, 3
snowboard, 3
sports ball, 3
kite, 4
baseball bat, 3
baseball glove, 3
skateboard, 3
surfboard, 3
tennis racket, 3
bottle, 2
wine glass, 2
cup, 2
fork, 1
knife, 1
spoon, 1
bowl, 1
banana, 1
apple, 1
sandwich,1
orange, 1
broccoli, 1
carrot, 1
hot dog, 1
pizza, 1
donut, 2
cake, 2
chair, 1
couch, 1
potted plant, 1
bed, 1
dining table, 1
toilet, 1
tv, 1
laptop, 1
mouse, 1
remote, 1
keyboard, 1
cell phone, 1
microwave, 1
oven, 1
toaster, 1
sink, 1
refrigerator, 1
book, 1
clock, 1
vase, 1
scissors, 1
teddy bear, 1
hair drier, 1
toothbrush, 1

Binary file not shown.

Binary file not shown.