//
// SmartCrop - A tool for content aware croping of images
// Copyright (C) 2024 Carl Philipp Klemm
//
// This file is part of SmartCrop.
//
// SmartCrop is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// SmartCrop is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SmartCrop. If not, see .
//
#include "facerecognizer.h"
#include
#define INCBIN_PREFIX r
#include "incbin.h"
INCBIN(defaultRecognizer, WEIGHT_DIR "/face_recognition_sface_2021dec.onnx");
INCBIN(defaultDetector, WEIGHT_DIR "/face_detection_yunet_2023mar.onnx");
#include
#include
#include
#include
#include "log.h"
static const std::vector onnx((unsigned char*)rdefaultDetectorData, ((unsigned char*)rdefaultDetectorData)+rdefaultDetectorSize);
FaceRecognizer::FaceRecognizer(std::filesystem::path recognizerPath, const std::filesystem::path& detectorPath, const std::vector& referances)
{
if(detectorPath.empty())
{
Log(Log::INFO)<<"Using builtin face detection model";
detector = cv::FaceDetectorYN::create("onnx", onnx, std::vector(), {320, 320}, 0.6, 0.3, 5000, cv::dnn::Backend::DNN_BACKEND_OPENCV, cv::dnn::Target::DNN_TARGET_CPU);
if(!detector)
throw LoadException("Unable to load detector network from built in file");
}
else
{
detector = cv::FaceDetectorYN::create(detectorPath, "", {320, 320}, 0.6, 0.3, 5000, cv::dnn::Backend::DNN_BACKEND_OPENCV, cv::dnn::Target::DNN_TARGET_CPU);
if(!detector)
throw LoadException("Unable to load detector network from "+detectorPath.string());
}
bool defaultNetwork = recognizerPath.empty();
if(defaultNetwork)
{
Log(Log::INFO)<<"Using builtin face recognition model";
recognizerPath = cv::tempfile("onnx");
std::ofstream file(recognizerPath);
if(!file.is_open())
throw LoadException("Unable open temporary file at "+recognizerPath.string());
Log(Log::DEBUG)<<"Using "<(rdefaultRecognizerData), rdefaultRecognizerSize);
file.close();
}
recognizer = cv::FaceRecognizerSF::create(recognizerPath.string(), "", cv::dnn::Backend::DNN_BACKEND_OPENCV, cv::dnn::Target::DNN_TARGET_CPU);
if(defaultNetwork)
std::filesystem::remove(recognizerPath);
if(!recognizer)
throw LoadException("Unable to load recognizer network from "+recognizerPath.string());
addReferances(referances);
}
cv::Mat FaceRecognizer::detectFaces(const cv::Mat& input)
{
detector->setInputSize(input.size());
cv::Mat faces;
detector->detect(input, faces);
return faces;
}
bool FaceRecognizer::addReferances(const std::vector& referances)
{
bool ret = false;
for(const cv::Mat& image : referances)
{
cv::Mat faces = detectFaces(image);
assert(faces.cols == 15);
if(faces.empty())
{
Log(Log::WARN)<<"A referance image provided dose not contian any face";
continue;
}
if(faces.rows > 1)
Log(Log::WARN)<<"A referance image provided contains more than one face, only the first detected face will be considered";
cv::Mat cropedImage;
recognizer->alignCrop(image, faces.row(0), cropedImage);
cv::Mat features;
recognizer->feature(cropedImage, features);
referanceFeatures.push_back(features.clone());
ret = true;
}
return ret;
}
void FaceRecognizer::setThreshold(double threasholdIn)
{
threshold = threasholdIn;
}
double FaceRecognizer::getThreshold()
{
return threshold;
}
void FaceRecognizer::clearReferances()
{
referanceFeatures.clear();
}
FaceRecognizer::Detection FaceRecognizer::isMatch(const cv::Mat& input, bool alone)
{
cv::Mat faces = detectFaces(input);
Detection bestMatch;
bestMatch.confidence = 0;
bestMatch.person = -1;
if(alone && faces.rows > 1)
{
bestMatch.person = -2;
return bestMatch;
}
for(int i = 0; i < faces.rows; ++i)
{
cv::Mat face;
recognizer->alignCrop(input, faces.row(i), face);
cv::Mat features;
recognizer->feature(face, features);
features = features.clone();
for(size_t referanceIndex = 0; referanceIndex < referanceFeatures.size(); ++referanceIndex)
{
double score = recognizer->match(referanceFeatures[referanceIndex], features, cv::FaceRecognizerSF::FR_COSINE);
if(score > threshold && score > bestMatch.confidence)
{
bestMatch.confidence = score;
bestMatch.person = referanceIndex;
bestMatch.rect = cv::Rect(faces.at(i, 0), faces.at(i, 1), faces.at(i, 2), faces.at(i, 3));
}
}
}
return bestMatch;
}