47 lines
1.2 KiB
C++
47 lines
1.2 KiB
C++
#pragma once
|
|
|
|
#include <fstream>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <random>
|
|
#include <filesystem>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/opencv.hpp>
|
|
#include <opencv2/dnn.hpp>
|
|
|
|
class Yolo
|
|
{
|
|
public:
|
|
struct Detection
|
|
{
|
|
int class_id = 0;
|
|
std::string className;
|
|
float confidence = 0.0;
|
|
int priority = -1;
|
|
cv::Scalar color;
|
|
cv::Rect box;
|
|
};
|
|
|
|
private:
|
|
static constexpr float modelConfidenceThreshold = 0.25;
|
|
static constexpr float modelScoreThreshold = 0.45;
|
|
static constexpr float modelNMSThreshold = 0.50;
|
|
|
|
std::string modelPath;
|
|
std::vector<std::pair<std::string, int>> classes;
|
|
cv::Size2f modelShape;
|
|
bool letterBoxForSquare = true;
|
|
cv::dnn::Net net;
|
|
|
|
void loadClasses(const std::string& classes);
|
|
void loadOnnxNetwork(const std::filesystem::path& path);
|
|
cv::Mat formatToSquare(const cv::Mat &source);
|
|
static void clampBox(cv::Rect& box, const cv::Size& size);
|
|
|
|
public:
|
|
Yolo(const std::filesystem::path &onnxModelPath = "", const cv::Size& modelInputShape = {640, 480},
|
|
const std::filesystem::path& classesTxtFilePath = "", bool runWithOCl = true);
|
|
std::vector<Detection> runInference(const cv::Mat &input);
|
|
int getClassForStr(const std::string& str) const;
|
|
};
|