Files
SDImagePreprocess/seamcarving.cpp
2023-06-28 23:59:50 +02:00

521 lines
15 KiB
C++

#include "seamcarving.h"
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
#if __cplusplus >= 201703L
#include <filesystem>
#endif
#include <cfloat>
SeamCarving::SeamCarving(const cv::Mat &img, int seams, bool grow) :
image(img), seams(seams), grow(grow) {}
void SeamCarving::init()
{
cv::Mat newFrame = image.clone();
for(int i = 0; i < seams; i++)
{
//Gradient Magnitude for intensity of image.
cv::Mat gradientMagnitude = computeGradientMagnitude(newFrame);
//Use DP to create the real energy map that is used for path calculation.
// Strictly using vertical paths for testing simplicity.
cv::Mat pathIntensityMat = computePathIntensityMat(gradientMagnitude);
if(pathIntensityMat.rows == 0 && pathIntensityMat.cols == 0)
{
finalImage = image;
break;
}
std::vector<int> seam = getLeastImportantPath(pathIntensityMat);
vecSeams.push_back(seam);
newFrame = removeLeastImportantPath(newFrame,seam);
if(newFrame.rows == 0 && newFrame.cols == 0)
{
finalImage = image;
break;
}
}
if (grow)
{
cv::Mat growMat = image.clone();
for (int i = 0; i < vecSeams.size(); i++)
{
growMat = addLeastImportantPath(growMat,vecSeams[i]);
}
finalImage = growMat;
}
else
{
finalImage = newFrame;
}
sliderPos = seams;
}
void SeamCarving::computeNewFinalImage(int sliderPos)
{
if(sliderPos == 0)
{
finalImage = image;
return;
}
if(sliderPos < 1 || sliderPos >= sliderMax-1)
{
return;
}
if(sliderPos > vecSeams.size())
{
cv::Mat newFrame = finalImage.clone();
for(int i = vecSeams.size()-1; i < sliderPos; i++)
{
//Gradient Magnitude for intensity of image.
cv::Mat gradientMagnitude = computeGradientMagnitude(newFrame);
//Use DP to create the real energy map that is used for path calculation.
// Strictly using vertical paths for testing simplicity.
cv::Mat pathIntensityMat = computePathIntensityMat(gradientMagnitude);
if(pathIntensityMat.rows == 0 && pathIntensityMat.cols == 0)
{
finalImage = image;
break;
}
std::vector<int> seam = getLeastImportantPath(pathIntensityMat);
vecSeams.push_back(seam);
newFrame = removeLeastImportantPath(newFrame,seam);
if(newFrame.rows == 0 && newFrame.cols == 0)
{
finalImage = image;
break;
}
}
if (grow)
{
cv::Mat growMat = image.clone();
for (int i = 0; i < vecSeams.size(); i++)
{
growMat = addLeastImportantPath(growMat,vecSeams[i]);
}
finalImage = growMat;
}
else
{
finalImage = newFrame;
}
}
else if (sliderPos < vecSeams.size())
{
cv::Mat newFrame = image.clone();
for(int i = 0; i < sliderPos; i++) // TODO check if it is faster to add seams back (probably not)
{
if (grow)
{
newFrame = addLeastImportantPath(newFrame,vecSeams[i]);
}
else
{
newFrame = removeLeastImportantPath(newFrame,vecSeams[i]);
}
if(newFrame.rows == 0 && newFrame.cols == 0)
{
finalImage = image;
break;
}
}
finalImage = newFrame;
}
}
const cv::Mat& SeamCarving::getFinalImage()
{
return finalImage;
}
void SeamCarving::showSeamsImg()
{
cv::Mat seamsFrame = image.clone();
//std::cout << "sliderPos: " << sliderPos << std::endl;
for(int i = 0; i < sliderPos; i++)
{
seamsFrame = drawSeam(seamsFrame, vecSeams[i]);
}
cv::imwrite("output/seams_image.jpg", seamsFrame);
cv::imshow( "Image Seams", seamsFrame);
}
static void onChange( int pos, void* object )
{
SeamCarving* sc = (SeamCarving*)(object);
/*if(sc->getBlockUpdateStatus()) {
return;
}*/
sc->computeNewFinalImage(pos);
imshow("Final Image", sc->getFinalImage());
#if DEBUG
sc->showSeamsImg();
#endif
}
static void onMouse( int event, int x, int y, int, void* object)
{
SeamCarving* sc = (SeamCarving*)(object);
if( event == cv::EVENT_LBUTTONDOWN ||
event == cv::EVENT_RBUTTONDOWN ||
event == cv::EVENT_MBUTTONDOWN
)
{
sc->setBlockUpdate(true);
}
else if(event == cv::EVENT_LBUTTONUP ||
event == cv::EVENT_RBUTTONUP ||
event == cv::EVENT_MBUTTONUP)
{
sc->setBlockUpdate(false);
}
}
void SeamCarving::setBlockUpdate(bool bUpdate)
{
blockUpdate = bUpdate;
}
bool SeamCarving::getBlockUpdateStatus()
{
return blockUpdate;
}
void SeamCarving::showImage()
{
#if __cplusplus >= 201703L
if(!std::filesystem::exists("output"))
{
std::filesystem::create_directory("output");
}
#endif
if( image.empty() )
{
std::cout << "Could not open raw image" << std::endl ;
return;
}
namedWindow( "Raw Image", cv::WINDOW_AUTOSIZE );
cv::imshow( "Raw Image", image );
if( finalImage.empty() )
{
std::cout << "Could not open final image" << std::endl ;
return;
}
#if DEBUG
namedWindow( "gradient Image", cv::WINDOW_AUTOSIZE );
cv::Mat gradient = computeGradientMagnitude(image);
cv::Mat u8_image;
gradient.convertTo(u8_image, CV_8U);
cv::imwrite("output/gradient_image.jpg", u8_image);
cv::imshow("gradient Image", u8_image);
namedWindow( "intensity Image", cv::WINDOW_AUTOSIZE );
cv::Mat u8_image2;
cv::Mat intensityMat = computePathIntensityMat(gradient);
cv::Mat dst;
cv::normalize(intensityMat, dst, 0, 255, cv::NORM_MINMAX);
dst.convertTo(u8_image2, CV_8U);
cv::imwrite("output/intensity_image.jpg", u8_image2);
cv::imshow( "intensity Image", u8_image2);
//cv::Mat engImg = GetEnergyImg(image);
//namedWindow("energy Image", cv::WINDOW_AUTOSIZE);
//cv::Mat u8_image3;
//engImg.convertTo(u8_image3, CV_8U);
//cv::imshow( "energy Image", u8_image3);
namedWindow("Image Seams", cv::WINDOW_AUTOSIZE);
showSeamsImg();
#endif
namedWindow( "Final Image", cv::WINDOW_AUTOSIZE );
cv::createTrackbar("Seams", "Final Image", &sliderPos, sliderMax, onChange, this);
//cv::setMouseCallback("Final Image", onMouse, this );
cv::imwrite("output/final_image.jpg", finalImage);
cv::imshow("Final Image", finalImage);
cv::waitKey(0);
}
cv::Mat SeamCarving::GetEnergyImg(const cv::Mat &img)
{
// find partial derivative of x-axis and y-axis seperately
// sum up the partial derivates
float pd[] = {1, 2, 1, 0, 0, 0, -1, -2 - 1};
cv::Mat xFilter(3, 3, CV_32FC1, pd);
cv::Mat yFilter = xFilter.t();
cv::Mat grayImg;
cv::cvtColor(img, grayImg, cv::COLOR_RGBA2GRAY);
cv::Mat dxImg;
cv::Mat dyImg;
cv::filter2D(grayImg, dxImg, 0, xFilter);
cv::filter2D(grayImg, dyImg, 0, yFilter);
//cv::Mat zeroMat = cv::Mat::zeros(dxImg.rows, dxImg.cols, dxImg.type());
//cv::Mat absDxImg;
//cv::Mat absDyImg;
//cv::absdiff(dxImg, zeroMat, absDxImg);
//cv::absdiff(dyImg, zeroMat, absDyImg);
cv::Mat absDxImg = cv::abs(dxImg);
cv::Mat absDyImg = cv::abs(dyImg);
cv::Mat energyImg;
cv::add(absDxImg, absDyImg, energyImg);
return energyImg;
}
cv::Mat SeamCarving::computeGradientMagnitude(const cv::Mat &frame)
{
cv::Mat grayScale;
cv::cvtColor(frame, grayScale, cv::COLOR_RGBA2GRAY);
cv::Mat drv = cv::Mat(grayScale.size(), CV_16SC1);
cv::Mat drv32f = cv::Mat(grayScale.size(), CV_32FC1);
cv::Mat mag = cv::Mat::zeros(grayScale.size(), CV_32FC1);
Sobel(grayScale, drv, CV_16SC1, 1, 0);
drv.convertTo(drv32f, CV_32FC1);
cv::accumulateSquare(drv32f, mag);
Sobel(grayScale, drv, CV_16SC1, 0, 1);
drv.convertTo(drv32f, CV_32FC1);
cv::accumulateSquare(drv32f, mag);
cv::sqrt(mag, mag);
return mag;
}
float SeamCarving::intensity(float currIndex, int start, int end)
{
if(start < 0 || start >= end)
{
return FLT_MAX;
}
else
{
return currIndex;
}
}
cv::Mat SeamCarving::computePathIntensityMat(const cv::Mat &rawEnergyMap)
{
cv::Mat pathIntensityMap = cv::Mat(rawEnergyMap.size(), CV_32FC1);
if(rawEnergyMap.total() == 0 || pathIntensityMap.total() == 0)
{
return cv::Mat();
}
//First row of intensity paths is the same as the energy map
rawEnergyMap.row(0).copyTo(pathIntensityMap.row(0));
float max = 0;
//The rest of them use the DP calculation using the minimum of the 3 pixels above them + their own intensity.
for(int row = 1; row < pathIntensityMap.rows; row++)
{
for(int col = 0; col < pathIntensityMap.cols; col++)
{
//The initial intensity of the pixel is its raw intensity
float pixelIntensity = rawEnergyMap.at<float>(row, col);
//The minimum intensity from the current path of the 3 pixels above it is added to its intensity.
float p1 = intensity(pathIntensityMap.at<float>(row-1, col-1), col - 1, pathIntensityMap.cols);
float p2 = intensity(pathIntensityMap.at<float>(row-1, col), col, pathIntensityMap.cols);
float p3 = intensity(pathIntensityMap.at<float>(row-1, col+1), col + 1, pathIntensityMap.cols);
float minIntensity = std::min(p1, p2);
minIntensity = std::min(minIntensity, p3);
pixelIntensity += minIntensity;
max = std::max(max, pixelIntensity);
pathIntensityMap.at<float>(row, col) = pixelIntensity;
}
}
return pathIntensityMap;
}
std::vector<int> SeamCarving::getLeastImportantPath(const cv::Mat &importanceMap)
{
if(importanceMap.total() == 0)
{
return std::vector<int>();
}
//Find the beginning of the least important path. Trying an averaging approach because absolute min wasn't very reliable.
float minImportance = importanceMap.at<float>(importanceMap.rows - 1, 0);
int minCol = 0;
for (int col = 1; col < importanceMap.cols; col++)
{
float currPixel =importanceMap.at<float>(importanceMap.rows - 1, col);
if(currPixel < minImportance)
{
minCol = col;
minImportance = currPixel;
}
}
std::vector<int> leastEnergySeam(importanceMap.rows);
leastEnergySeam[importanceMap.rows-1] = minCol;
for(int row = importanceMap.rows - 2; row >= 0; row--)
{
float p1 = intensity(importanceMap.at<float>(row, minCol-1), minCol - 1, importanceMap.cols);
float p2 = intensity(importanceMap.at<float>(row, minCol), minCol, importanceMap.cols);
float p3 = intensity(importanceMap.at<float>(row, minCol+1), minCol + 1, importanceMap.cols);
//Adjust the min column for path following
if(p1 < p2 && p1 < p3)
{
minCol -= 1;
}
else if(p3 < p1 && p3 < p2)
{
minCol += 1;
}
leastEnergySeam[row] = minCol;
}
return leastEnergySeam;
}
cv::Mat SeamCarving::removeLeastImportantPath(const cv::Mat &original, const std::vector<int> &seam)
{
cv::Size orgSize = original.size();
// new mat needs to shrink by one collumn
cv::Size size = cv::Size(orgSize.width-1, orgSize.height);
cv::Mat newMat = cv::Mat(size, original.type());
unsigned char *rawOrig = original.data;
unsigned char *rawOutput = newMat.data;
for(int row = 0; row < seam.size(); row++)
{
removePixel(original, newMat, row, seam[row]);
}
return newMat;
}
void SeamCarving::removePixel(const cv::Mat &original, cv::Mat &outputMat, int row, int minCol)
{
int width = original.cols;
int channels = original.channels();
int originRowStart = row * channels * width;
int newRowStart = row * channels * (width - 1);
int firstNum = minCol * channels;
unsigned char *rawOrig = original.data;
unsigned char *rawOutput = outputMat.data;
//std::cout << "originRowStart: " << originRowStart << std::endl;
//std::cout << "newRowStart: " << newRowStart << std::endl;
//std::cout << "firstNum: " << firstNum << std::endl;
memcpy(rawOutput + newRowStart, rawOrig + originRowStart, firstNum);
int originRowMid = originRowStart + (minCol + 1) * channels;
int newRowMid = newRowStart + minCol * channels;
int secondNum = (width - 1) * channels - firstNum;
//std::cout << "originRowMid: " << originRowMid << std::endl;
//std::cout << "newRowMid: " << newRowMid << std::endl;
//std::cout << "secondNum: " << secondNum << std::endl;
memcpy(rawOutput + newRowMid, rawOrig + originRowMid, secondNum);
int leftPixel = minCol - 1;
int rightPixel = minCol + 1;
int byte1 = rawOrig[originRowStart + minCol * channels];
int byte2 = rawOrig[originRowStart + minCol * channels + 1];
int byte3 = rawOrig[originRowStart + minCol * channels + 2];
if (rightPixel < width)
{
int byte1R = rawOrig[originRowStart + rightPixel * channels];
int byte2R = rawOrig[originRowStart + rightPixel * channels + 1];
int byte3R = rawOrig[originRowStart + rightPixel * channels + 2];
rawOutput[newRowStart + minCol * channels] = (unsigned char)((byte1 + byte1R) / 2);
rawOutput[newRowStart + minCol * channels + 1] = (unsigned char)((byte2 + byte2R) / 2);
rawOutput[newRowStart + minCol * channels + 2] = (unsigned char)((byte3 + byte3R) / 2);
}
if(leftPixel >= 0)
{
int byte1L = rawOrig[originRowStart + leftPixel*channels];
int byte2L = rawOrig[originRowStart + leftPixel*channels+1];
int byte3L = rawOrig[originRowStart + leftPixel*channels+2];
rawOutput[newRowStart + leftPixel*channels] = (unsigned char) ((byte1 + byte1L)/2);
rawOutput[newRowStart + leftPixel*channels+1] = (unsigned char) ((byte2 + byte2L)/2);
rawOutput[newRowStart + leftPixel*channels+2] = (unsigned char) ((byte3 + byte3L)/2);
}
}
cv::Mat SeamCarving::addLeastImportantPath(const cv::Mat &original, const std::vector<int> &seam)
{
cv::Size orgSize = original.size();
// new mat needs to grow by one column
cv::Size size = cv::Size(orgSize.width+1, orgSize.height);
cv::Mat newMat = cv::Mat(size, original.type());
unsigned char *rawOrig = original.data;
unsigned char *rawOutput = newMat.data;
for(int row = 0; row < seam.size(); row++)
{
//std::cout << "row: " << row << ", col: " << seam[row] << std::endl;
addPixel(original, newMat, row, seam[row]);
}
return newMat;
}
void SeamCarving::addPixel(const cv::Mat &original, cv::Mat &outputMat, int row, int minCol)
{
int width = original.cols;
int channels = original.channels();
int originRowStart = row * channels * width;
int newRowStart = row * channels * (width + 1);
int firstNum = (minCol + 1) * channels;
unsigned char *rawOrig = original.data;
unsigned char *rawOutput = outputMat.data;
memcpy(rawOutput + newRowStart, rawOrig + originRowStart, firstNum);
memcpy(rawOutput + newRowStart + firstNum, rawOrig + originRowStart + firstNum, channels);
int originRowMid = originRowStart + ((minCol + 1) * channels);
int newRowMid = newRowStart + ((minCol + 2) * channels);
int secondNum = (width * channels) - firstNum;
memcpy(rawOutput + newRowMid, rawOrig + originRowMid, secondNum);
int leftPixel = minCol - 1;
int rightPixel = minCol + 1;
int byte1 = rawOrig[originRowStart + minCol * channels];
int byte2 = rawOrig[originRowStart + minCol * channels + 1];
int byte3 = rawOrig[originRowStart + minCol * channels + 2];
if (rightPixel < width)
{
int byte1R = rawOrig[originRowStart + rightPixel * channels];
int byte2R = rawOrig[originRowStart + rightPixel * channels + 1];
int byte3R = rawOrig[originRowStart + rightPixel * channels + 2];
rawOutput[newRowStart + minCol * channels] = (unsigned char)((byte1 + byte1R) / 2);
rawOutput[newRowStart + minCol * channels + 1] = (unsigned char)((byte2 + byte2R) / 2);
rawOutput[newRowStart + minCol * channels + 2] = (unsigned char)((byte3 + byte3R) / 2);
}
if(leftPixel >= 0)
{
int byte1L = rawOrig[originRowStart + leftPixel*channels];
int byte2L = rawOrig[originRowStart + leftPixel*channels+1];
int byte3L = rawOrig[originRowStart + leftPixel*channels+2];
rawOutput[newRowStart + leftPixel*channels] = (unsigned char) ((byte1 + byte1L)/2);
rawOutput[newRowStart + leftPixel*channels+1] = (unsigned char) ((byte2 + byte2L)/2);
rawOutput[newRowStart + leftPixel*channels+2] = (unsigned char) ((byte3 + byte3L)/2);
}
}