458 lines
13 KiB
C++

//
// SmartCrop - A tool for content aware croping of images
// Copyright (C) 2024 Carl Philipp Klemm
//
// This file is part of SmartCrop.
//
// SmartCrop is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// SmartCrop is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
//
#include <filesystem>
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/core/types.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <algorithm>
#include <execution>
#include <string>
#include <vector>
#include <numeric>
#include <opencv2/highgui.hpp>
#include "yolo.h"
#include "log.h"
#include "options.h"
#include "utils.h"
#include "intelligentroi.h"
#include "seamcarving.h"
#include "facerecognizer.h"
const Yolo::Detection* pointInDetectionHoriz(int x, const std::vector<Yolo::Detection>& detections, const Yolo::Detection* ignore = nullptr)
{
const Yolo::Detection* inDetection = nullptr;
for(const Yolo::Detection& detection : detections)
{
if(ignore && ignore == &detection)
continue;
if(detection.box.x <= x && detection.box.x+detection.box.width >= x)
{
if(!inDetection || detection.box.br().x > inDetection->box.br().x)
inDetection = &detection;
}
}
return inDetection;
}
bool findRegionEndpointHoriz(int& x, const std::vector<Yolo::Detection>& detections, int imgSizeX)
{
const Yolo::Detection* inDetection = pointInDetectionHoriz(x, detections);
Log(Log::DEBUG, false)<<__func__<<" point "<<x;
if(!inDetection)
{
const Yolo::Detection* closest = nullptr;
for(const Yolo::Detection& detection : detections)
{
if(detection.box.x > x)
{
if(closest == nullptr || detection.box.x-x > closest->box.x-x)
closest = &detection;
}
}
if(closest)
x = closest->box.x;
else
x = imgSizeX;
Log(Log::DEBUG)<<" is not in any box and will be moved to "<<x<<" where the closest box ("<<(closest ? closest->className : "null")<<") is";
return false;
}
else
{
x = inDetection->box.br().x;
Log(Log::DEBUG, false)<<" is in a box and will be moved to its end "<<x<<" where ";
const Yolo::Detection* candidateDetection = pointInDetectionHoriz(x, detections, inDetection);
if(candidateDetection && candidateDetection->box.br().x > x)
{
Log(Log::DEBUG)<<"it is again in a box";
return findRegionEndpointHoriz(x, detections, imgSizeX);
}
else
{
Log(Log::DEBUG)<<"it is not in a box";
return true;
}
}
}
std::vector<std::pair<cv::Mat, bool>> cutImageIntoHorzRegions(cv::Mat& image, const std::vector<Yolo::Detection>& detections)
{
std::vector<std::pair<cv::Mat, bool>> out;
std::cout<<__func__<<' '<<image.cols<<'x'<<image.rows<<std::endl;
for(int x = 0; x < image.cols; ++x)
{
int start = x;
bool frozen = findRegionEndpointHoriz(x, detections, image.cols);
int width = x-start;
if(x < image.cols)
++width;
cv::Rect rect(start, 0, width, image.rows);
Log(Log::DEBUG)<<__func__<<" region\t"<<rect;
cv::Mat slice = image(rect);
out.push_back({slice, frozen});
}
return out;
}
cv::Mat assembleFromSlicesHoriz(const std::vector<std::pair<cv::Mat, bool>>& slices)
{
assert(!slices.empty());
int cols = 0;
for(const std::pair<cv::Mat, bool>& slice : slices)
cols += slice.first.cols;
cv::Mat image(cols, slices[0].first.rows, slices[0].first.type());
Log(Log::DEBUG)<<__func__<<' '<<image.size()<<' '<<cols<<' '<<slices[0].first.rows;
int col = 0;
for(const std::pair<cv::Mat, bool>& slice : slices)
{
cv::Rect rect(col, 0, slice.first.cols, slice.first.rows);
Log(Log::DEBUG)<<__func__<<' '<<rect;
slice.first.copyTo(image(rect));
col += slice.first.cols-1;
}
return image;
}
void transposeRect(cv::Rect& rect)
{
int x = rect.x;
rect.x = rect.y;
rect.y = x;
int width = rect.width;
rect.width = rect.height;
rect.height = width;
}
bool seamCarveResize(cv::Mat& image, std::vector<Yolo::Detection> detections, double targetAspectRatio = 1.0)
{
detections.erase(std::remove_if(detections.begin(), detections.end(), [](const Yolo::Detection& detection){return detection.priority < 3;}), detections.end());
double aspectRatio = image.cols/static_cast<double>(image.rows);
Log(Log::DEBUG)<<"Image size "<<image.size()<<" aspect ratio "<<aspectRatio<<" target aspect ratio "<<targetAspectRatio;
bool vertical = false;
if(aspectRatio > targetAspectRatio)
vertical = true;
int requiredLines = 0;
if(!vertical)
requiredLines = image.rows*targetAspectRatio - image.cols;
else
requiredLines = image.cols/targetAspectRatio - image.rows;
Log(Log::DEBUG)<<__func__<<' '<<requiredLines<<" lines are required in "<<(vertical ? "vertical" : "horizontal")<<" direction";
if(vertical)
{
cv::transpose(image, image);
for(Yolo::Detection& detection : detections)
transposeRect(detection.box);
}
std::vector<std::pair<cv::Mat, bool>> slices = cutImageIntoHorzRegions(image, detections);
Log(Log::DEBUG)<<"Image has "<<slices.size()<<" slices:";
int totalResizableSize = 0;
for(const std::pair<cv::Mat, bool>& slice : slices)
{
Log(Log::DEBUG)<<"a "<<(slice.second ? "frozen" : "unfrozen")<<" slice of size "<<slice.first.cols;
if(!slice.second)
totalResizableSize += slice.first.cols;
}
if(totalResizableSize < requiredLines+1)
{
Log(Log::WARN)<<"Unable to seam carve as there are only "<<totalResizableSize<<" unfrozen cols";
if(vertical)
cv::transpose(image, image);
return false;
}
std::vector<int> seamsForSlice(slices.size(), 0);
for(size_t i = 0; i < slices.size(); ++i)
{
if(!slices[i].second)
seamsForSlice[i] = (static_cast<double>(slices[i].first.cols)/totalResizableSize)*requiredLines;
}
int residual = requiredLines - std::accumulate(seamsForSlice.begin(), seamsForSlice.end(), decltype(seamsForSlice)::value_type(0));;
for(ssize_t i = slices.size()-1; i >= 0; --i)
{
if(!slices[i].second)
{
seamsForSlice[i] += residual;
break;
}
}
for(size_t i = 0; i < slices.size(); ++i)
{
if(seamsForSlice[i] != 0)
{
bool ret = SeamCarving::strechImage(slices[i].first, seamsForSlice[i], true);
if(!ret)
{
if(vertical)
transpose(image, image);
return false;
}
}
}
image = assembleFromSlicesHoriz(slices);
if(vertical)
cv::transpose(image, image);
return true;
}
void drawDebugInfo(cv::Mat &image, const cv::Rect& rect, const std::vector<Yolo::Detection>& detections)
{
for(const Yolo::Detection& detection : detections)
{
cv::rectangle(image, detection.box, detection.color, 3);
std::string label = detection.className + ' ' + std::to_string(detection.confidence).substr(0, 4) + ' ' + std::to_string(detection.priority);
cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_DUPLEX, 1, 1, 0);
cv::Rect textBox(detection.box.x, detection.box.y - 40, labelSize.width + 10, labelSize.height + 20);
cv::rectangle(image, textBox, detection.color, cv::FILLED);
cv::putText(image, label, cv::Point(detection.box.x + 5, detection.box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 1, 0);
}
cv::rectangle(image, rect, cv::Scalar(0, 0, 255), 8);
}
static void reduceSize(cv::Mat& image, const cv::Size& targetSize)
{
int longTargetSize = std::max(targetSize.width, targetSize.height)*2;
if(std::max(image.cols, image.rows) > longTargetSize)
{
if(image.cols > image.rows)
{
double ratio = static_cast<double>(longTargetSize)/image.cols;
cv::resize(image, image, {longTargetSize, static_cast<int>(image.rows*ratio)}, 0, 0, ratio < 1 ? cv::INTER_AREA : cv::INTER_CUBIC);
}
else
{
double ratio = static_cast<double>(longTargetSize)/image.rows;
cv::resize(image, image, {static_cast<int>(image.cols*ratio), longTargetSize}, 0, 0, ratio < 1 ? cv::INTER_AREA : cv::INTER_CUBIC);
}
}
}
void pipeline(const std::filesystem::path& path, const Config& config, Yolo& yolo, FaceRecognizer* recognizer,
std::mutex& reconizerMutex, const std::filesystem::path& debugOutputPath)
{
InteligentRoi intRoi(yolo);
cv::Mat image = cv::imread(path);
if(!image.data)
{
Log(Log::WARN)<<"could not load image "<<path<<" skipping";
return;
}
reduceSize(image, config.targetSize);
std::vector<Yolo::Detection> detections = yolo.runInference(image);
Log(Log::DEBUG)<<"Got "<<detections.size()<<" detections for "<<path;
for(Yolo::Detection& detection : detections)
{
bool hasmatch = false;
if(recognizer && detection.className == "person")
{
cv::Mat person = image(detection.box);
reconizerMutex.lock();
FaceRecognizer::Detection match = recognizer->isMatch(person);
reconizerMutex.unlock();
if(match.person >= 0)
{
detection.priority += 10;
hasmatch = true;
//detections.push_back({0, "Face", match.confidence, 20, {255, 0, 0}, match.rect});
}
}
Log(Log::DEBUG)<<detection.class_id<<": "<<detection.className<<" at "<<detection.box<<" with prio "<<detection.priority<<(hasmatch ? " has match" : "");
}
cv::Rect crop;
bool incompleate = intRoi.getCropRectangle(crop, detections, image.size(), config.targetSize.aspectRatio());
if(config.seamCarving && incompleate)
{
bool ret = seamCarveResize(image, detections, config.targetSize.aspectRatio());
if(ret && image.size().aspectRatio() != config.targetSize.aspectRatio())
{
detections = yolo.runInference(image);
}
}
cv::Mat croppedImage;
if(image.size().aspectRatio() == config.targetSize.aspectRatio())
{
croppedImage = image;
}
else
{
if(incompleate)
intRoi.getCropRectangle(crop, detections, image.size(), config.targetSize.aspectRatio());
if(config.debug)
{
cv::Mat debugImage = image.clone();
drawDebugInfo(debugImage, crop, detections);
bool ret = cv::imwrite(debugOutputPath/path.filename(), debugImage);
if(!ret)
Log(Log::WARN)<<"could not save debug image to "<<debugOutputPath/path.filename()<<" skipping";
}
croppedImage = image(crop);
}
cv::Mat resizedImage;
cv::resize(croppedImage, resizedImage, config.targetSize, 0, 0, cv::INTER_CUBIC);
bool ret = cv::imwrite(config.outputDir/path.filename(), resizedImage);
if(!ret)
Log(Log::WARN)<<"could not save image to "<<config.outputDir/path.filename()<<" skipping";
}
void threadFn(const std::vector<std::filesystem::path>& images, const Config& config, FaceRecognizer* recognizer,
std::mutex& reconizerMutex, const std::filesystem::path& debugOutputPath)
{
Yolo yolo(config.modelPath, {640, 480}, config.classesPath, false);
for(std::filesystem::path path : images)
pipeline(path, config, yolo, recognizer, reconizerMutex, debugOutputPath);
}
template<typename T>
std::vector<std::vector<T>> splitVector(const std::vector<T>& vec, size_t parts)
{
std::vector<std::vector<T>> out;
size_t length = vec.size()/parts;
size_t remain = vec.size() % parts;
size_t begin = 0;
size_t end = 0;
for (size_t i = 0; i < std::min(parts, vec.size()); ++i)
{
end += (remain > 0) ? (length + !!(remain--)) : length;
out.push_back(std::vector<T>(vec.begin() + begin, vec.begin() + end));
begin = end;
}
return out;
}
int main(int argc, char* argv[])
{
Log::level = Log::INFO;
Config config;
argp_parse(&argp, argc, argv, 0, 0, &config);
if(config.outputDir.empty())
{
Log(Log::ERROR)<<"a output path \"-o\" is required";
return 1;
}
if(config.imagePaths.empty())
{
Log(Log::ERROR)<<"at least one input image or directory is required";
return 1;
}
std::vector<std::filesystem::path> imagePaths;
for(const std::filesystem::path& path : config.imagePaths)
getImageFiles(path, imagePaths);
Log(Log::DEBUG)<<"Images:";
for(const::std::filesystem::path& path: imagePaths)
Log(Log::DEBUG)<<path;
if(imagePaths.empty())
{
Log(Log::ERROR)<<"no image was found\n";
return 1;
}
if(!std::filesystem::exists(config.outputDir))
{
if(!std::filesystem::create_directory(config.outputDir))
{
Log(Log::ERROR)<<"could not create directory at "<<config.outputDir;
return 1;
}
}
std::filesystem::path debugOutputPath(config.outputDir/"debug");
if(config.debug)
{
if(!std::filesystem::exists(debugOutputPath))
std::filesystem::create_directory(debugOutputPath);
}
FaceRecognizer* recognizer = nullptr;
std::mutex recognizerMutex;
if(!config.focusPersonImage.empty())
{
cv::Mat personImage = cv::imread(config.focusPersonImage);
if(personImage.empty())
{
Log(Log::ERROR)<<"Could not load image from "<<config.focusPersonImage;
return 1;
}
recognizer = new FaceRecognizer();
recognizer->addReferances({personImage});
recognizer->setThreshold(config.threshold);
}
std::vector<std::thread> threads;
std::vector<std::vector<std::filesystem::path>> imagePathParts = splitVector(imagePaths, 1/*std::thread::hardware_concurrency()*/);
for(size_t i = 0; i < imagePathParts.size(); ++i)
threads.push_back(std::thread(threadFn, imagePathParts[i], std::ref(config), recognizer, std::ref(recognizerMutex), std::ref(debugOutputPath)));
for(std::thread& thread : threads)
thread.join();
return 0;
}