397 lines
11 KiB
C++
397 lines
11 KiB
C++
#include <filesystem>
|
|
#include <iostream>
|
|
#include <opencv2/core/types.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "yolo.h"
|
|
#include "log.h"
|
|
#include "options.h"
|
|
#include "utils.h"
|
|
#include "intelligentroi.h"
|
|
#include "seamcarving.h"
|
|
|
|
const Yolo::Detection* pointInDetectionHoriz(int x, const std::vector<Yolo::Detection>& detections, const Yolo::Detection* ignore = nullptr)
|
|
{
|
|
const Yolo::Detection* inDetection = nullptr;
|
|
for(const Yolo::Detection& detection : detections)
|
|
{
|
|
if(!ignore || ignore != &detection)
|
|
continue;
|
|
|
|
if(detection.box.x <= x && detection.box.x+detection.box.width <= x)
|
|
{
|
|
if(!inDetection || detection.box.br().x > inDetection->box.br().x)
|
|
inDetection = &detection;
|
|
}
|
|
}
|
|
return inDetection;
|
|
}
|
|
|
|
bool findRegionEndpointHoriz(int& x, const std::vector<Yolo::Detection>& detections, int imgSizeX)
|
|
{
|
|
const Yolo::Detection* inDetection = pointInDetectionHoriz(x, detections);
|
|
|
|
if(!inDetection)
|
|
{
|
|
const Yolo::Detection* closest = nullptr;
|
|
for(const Yolo::Detection& detection : detections)
|
|
{
|
|
if(detection.box.x > x)
|
|
{
|
|
if(closest == nullptr || detection.box.x-x > closest->box.x-x)
|
|
closest = &detection;
|
|
}
|
|
}
|
|
if(closest)
|
|
x = closest->box.x;
|
|
else
|
|
x = imgSizeX;
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
x = inDetection->box.br().x;
|
|
const Yolo::Detection* candidateDetection = pointInDetectionHoriz(x, detections, inDetection);
|
|
if(candidateDetection && candidateDetection->box.br().x > x)
|
|
return findRegionEndpointHoriz(x, detections, imgSizeX);
|
|
else
|
|
return true;
|
|
}
|
|
}
|
|
|
|
std::vector<std::pair<cv::Mat, bool>> cutImageIntoHorzRegions(cv::Mat& image, const std::vector<Yolo::Detection>& detections)
|
|
{
|
|
std::vector<std::pair<cv::Mat, bool>> out;
|
|
|
|
for(int x = 0; x < image.cols; ++x)
|
|
{
|
|
int start = x;
|
|
bool frozen = findRegionEndpointHoriz(x, detections, image.cols);
|
|
|
|
cv::Mat slice = image(cv::Rect(start, 0, x-start, image.rows));
|
|
out.push_back({slice, frozen});
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
const Yolo::Detection* pointInDetectionVert(int y, const std::vector<Yolo::Detection>& detections, const Yolo::Detection* ignore = nullptr)
|
|
{
|
|
const Yolo::Detection* inDetection = nullptr;
|
|
for(const Yolo::Detection& detection : detections)
|
|
{
|
|
if(!ignore || ignore != &detection)
|
|
continue;
|
|
|
|
if(detection.box.y <= y && detection.box.y+detection.box.height <= y)
|
|
{
|
|
if(!inDetection || detection.box.br().y > inDetection->box.br().y)
|
|
inDetection = &detection;
|
|
}
|
|
}
|
|
return inDetection;
|
|
}
|
|
|
|
bool findRegionEndpointVert(int& y, const std::vector<Yolo::Detection>& detections, int imgSizeY)
|
|
{
|
|
const Yolo::Detection* inDetection = pointInDetectionVert(y, detections);
|
|
|
|
if(!inDetection)
|
|
{
|
|
const Yolo::Detection* closest = nullptr;
|
|
for(const Yolo::Detection& detection : detections)
|
|
{
|
|
if(detection.box.y > y)
|
|
{
|
|
if(closest == nullptr || detection.box.y-y > closest->box.y-y)
|
|
closest = &detection;
|
|
}
|
|
}
|
|
if(closest)
|
|
y = closest->box.y;
|
|
else
|
|
y = imgSizeY;
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
y = inDetection->box.br().y;
|
|
const Yolo::Detection* candidateDetection = pointInDetectionVert(y, detections, inDetection);
|
|
if(candidateDetection && candidateDetection->box.br().y > y)
|
|
return findRegionEndpointVert(y, detections, imgSizeY);
|
|
else
|
|
return true;
|
|
}
|
|
}
|
|
|
|
std::vector<std::pair<cv::Mat, bool>> cutImageIntoVertRegions(cv::Mat& image, const std::vector<Yolo::Detection>& detections)
|
|
{
|
|
std::vector<std::pair<cv::Mat, bool>> out;
|
|
|
|
for(int y = 0; y < image.rows; ++y)
|
|
{
|
|
int start = y;
|
|
bool frozen = findRegionEndpointVert(y, detections, image.rows);
|
|
|
|
cv::Mat slice = image(cv::Rect(0, start, image.cols, y-start));
|
|
out.push_back({slice, frozen});
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
cv::Mat assembleFromSlicesVert(const std::vector<std::pair<cv::Mat, bool>>& slices)
|
|
{
|
|
assert(!slices.empty());
|
|
|
|
int rows = 0;
|
|
for(const std::pair<cv::Mat, bool>& slice : slices)
|
|
rows += slice.first.rows;
|
|
|
|
cv::Mat image(slices[0].first.cols, rows, slices[0].first.type());
|
|
|
|
Log(Log::DEBUG)<<__func__<<" assembled image size "<<image.size;
|
|
|
|
int row = 0;
|
|
for(const std::pair<cv::Mat, bool>& slice : slices)
|
|
{
|
|
cv::Rect rect(0, row, slice.first.cols, slice.first.rows);
|
|
slice.first.copyTo(image(rect));
|
|
row += slice.first.rows;
|
|
}
|
|
|
|
return image;
|
|
}
|
|
|
|
cv::Mat assembleFromSlicesHoriz(const std::vector<std::pair<cv::Mat, bool>>& slices)
|
|
{
|
|
assert(!slices.empty());
|
|
|
|
int cols = 0;
|
|
for(const std::pair<cv::Mat, bool>& slice : slices)
|
|
cols += slice.first.cols;
|
|
|
|
cv::Mat image(cols, slices[0].first.rows, slices[0].first.type());
|
|
|
|
int col = 0;
|
|
for(const std::pair<cv::Mat, bool>& slice : slices)
|
|
{
|
|
cv::Rect rect(col, 0, slice.first.cols, slice.first.rows);
|
|
slice.first.copyTo(image(rect));
|
|
col += slice.first.cols;
|
|
}
|
|
|
|
return image;
|
|
}
|
|
|
|
bool seamCarveResize(cv::Mat& image, std::vector<Yolo::Detection> detections, double targetAspectRatio = 1.0)
|
|
{
|
|
detections.erase(std::remove_if(detections.begin(), detections.end(), [](const Yolo::Detection& detection){return detection.priority < 3;}), detections.end());
|
|
|
|
double aspectRatio = image.cols/static_cast<double>(image.rows);
|
|
|
|
Log(Log::DEBUG)<<"Image size "<<image.size()<<" aspect ratio "<<aspectRatio<<" target aspect ratio "<<targetAspectRatio;
|
|
|
|
bool vertical = false;
|
|
if(aspectRatio > targetAspectRatio)
|
|
vertical = true;
|
|
|
|
int requiredLines = 0;
|
|
if(!vertical)
|
|
requiredLines = image.rows*targetAspectRatio - image.cols;
|
|
else
|
|
requiredLines = image.cols/targetAspectRatio - image.rows;
|
|
|
|
Log(Log::DEBUG)<<__func__<<' '<<requiredLines<<" lines are required in "<<(vertical ? "vertical" : "horizontal")<<" direction";
|
|
|
|
if(!vertical)
|
|
{
|
|
std::vector<std::pair<cv::Mat, bool>> slices = cutImageIntoHorzRegions(image, detections);
|
|
Log(Log::DEBUG)<<"Image has "<<slices.size()<<" slices";
|
|
int totalResizableSize = 0;
|
|
for(const std::pair<cv::Mat, bool>& slice : slices)
|
|
{
|
|
if(slice.second)
|
|
totalResizableSize += slice.first.cols;
|
|
}
|
|
|
|
if(totalResizableSize < requiredLines/10)
|
|
{
|
|
Log(Log::WARN)<<"Unable to seam carve as there are only "<<totalResizableSize<<" unfrozen cols";
|
|
return false;
|
|
}
|
|
|
|
for(size_t i = 0; i < slices.size(); ++i)
|
|
{
|
|
if(slices[i].second)
|
|
{
|
|
int seamsForSlice = (static_cast<double>(slices[i].first.cols)/totalResizableSize)*requiredLines;
|
|
bool ret = SeamCarving::strechImage(image, seamsForSlice, true);
|
|
if(!ret)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
image = assembleFromSlicesHoriz(slices);
|
|
}
|
|
else
|
|
{
|
|
std::vector<std::pair<cv::Mat, bool>> slices = cutImageIntoVertRegions(image, detections);
|
|
Log(Log::DEBUG)<<"Image has "<<slices.size()<<" slices";
|
|
int totalResizableSize = 0;
|
|
for(const std::pair<cv::Mat, bool>& slice : slices)
|
|
{
|
|
if(slice.second)
|
|
totalResizableSize += slice.first.rows;
|
|
}
|
|
|
|
if(totalResizableSize < requiredLines/10)
|
|
{
|
|
Log(Log::WARN)<<"Unable to seam carve as there are only "<<totalResizableSize<<" unfrozen rows";
|
|
return false;
|
|
}
|
|
|
|
for(size_t i = 0; i < slices.size(); ++i)
|
|
{
|
|
if(slices[i].second)
|
|
{
|
|
int seamsForSlice = (static_cast<double>(slices[i].first.rows)/totalResizableSize)*requiredLines;
|
|
bool ret = SeamCarving::strechImageVert(image, seamsForSlice, true);
|
|
if(!ret)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
image = assembleFromSlicesVert(slices);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void drawDebugInfo(cv::Mat &image, const cv::Rect& rect, const std::vector<Yolo::Detection>& detections)
|
|
{
|
|
for(const Yolo::Detection& detection : detections)
|
|
{
|
|
cv::rectangle(image, detection.box, detection.color, 3);
|
|
std::string label = detection.className + ' ' + std::to_string(detection.confidence).substr(0, 4);
|
|
cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_DUPLEX, 1, 1, 0);
|
|
cv::Rect textBox(detection.box.x, detection.box.y - 40, labelSize.width + 10, labelSize.height + 20);
|
|
cv::rectangle(image, textBox, detection.color, cv::FILLED);
|
|
cv::putText(image, label, cv::Point(detection.box.x + 5, detection.box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 1, 0);
|
|
}
|
|
|
|
cv::rectangle(image, rect, cv::Scalar(0, 0, 255), 8);
|
|
}
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
Log::level = Log::INFO;
|
|
|
|
Config config;
|
|
argp_parse(&argp, argc, argv, 0, 0, &config);
|
|
|
|
if(config.outputDir.empty())
|
|
{
|
|
Log(Log::ERROR)<<"a output path \"-o\" is required";
|
|
return 1;
|
|
}
|
|
|
|
if(config.imagePaths.empty())
|
|
{
|
|
Log(Log::ERROR)<<"at least one input image or directory is required";
|
|
return 1;
|
|
}
|
|
|
|
std::vector<std::filesystem::path> imagePaths;
|
|
|
|
for(const std::filesystem::path& path : config.imagePaths)
|
|
getImageFiles(path, imagePaths);
|
|
|
|
Log(Log::DEBUG)<<"Images:";
|
|
for(const::std::filesystem::path& path: imagePaths)
|
|
Log(Log::DEBUG)<<path;
|
|
|
|
if(imagePaths.empty())
|
|
{
|
|
Log(Log::ERROR)<<"no image was found\n";
|
|
return 1;
|
|
}
|
|
|
|
Yolo yolo(config.modelPath, {640, 480}, config.classesPath, false);
|
|
InteligentRoi intRoi(yolo);
|
|
|
|
if(!std::filesystem::exists(config.outputDir))
|
|
{
|
|
if(!std::filesystem::create_directory(config.outputDir))
|
|
{
|
|
Log(Log::ERROR)<<"could not create directory at "<<config.outputDir;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
std::filesystem::path debugOutputPath(config.outputDir/"debug");
|
|
if(config.debug)
|
|
{
|
|
if(!std::filesystem::exists(debugOutputPath))
|
|
std::filesystem::create_directory(debugOutputPath);
|
|
}
|
|
|
|
for(const std::filesystem::path& path : imagePaths)
|
|
{
|
|
cv::Mat image = cv::imread(path);
|
|
if(!image.data)
|
|
{
|
|
Log(Log::WARN)<<"could not load image "<<path<<" skipping";
|
|
continue;
|
|
}
|
|
|
|
if(std::max(image.cols, image.rows) > 1024)
|
|
{
|
|
Log(Log::DEBUG, false)<<"Image is "<<image.size();
|
|
if(image.cols > image.rows)
|
|
{
|
|
double ratio = 1024.0/image.cols;
|
|
cv::resize(image, image, {1024, static_cast<int>(image.rows*ratio)}, 0, 0, cv::INTER_CUBIC);
|
|
}
|
|
else
|
|
{
|
|
double ratio = 1024.0/image.rows;
|
|
cv::resize(image, image, {static_cast<int>(image.cols*ratio), 1024}, 0, 0, cv::INTER_CUBIC);
|
|
}
|
|
Log(Log::DEBUG)<<" resized to "<<image.size();
|
|
}
|
|
|
|
std::vector<Yolo::Detection> detections = yolo.runInference(image);
|
|
|
|
Log(Log::DEBUG)<<"Got "<<detections.size()<<" detections for "<<path;
|
|
for(const Yolo::Detection& detection : detections)
|
|
Log(Log::DEBUG)<<detection.class_id<<": "<<detection.className<<" at "<<detection.box<<" with prio "<<detection.priority;
|
|
|
|
if(config.seamCarving)
|
|
{
|
|
Log(Log::INFO)<<"Trying seam resize";
|
|
seamCarveResize(image, detections, 1);
|
|
}
|
|
|
|
cv::Rect crop = intRoi.getCropRectangle(detections, image.size());
|
|
|
|
if(config.debug)
|
|
{
|
|
cv::Mat debugImage = image.clone();
|
|
drawDebugInfo(debugImage, crop, detections);
|
|
bool ret = cv::imwrite(debugOutputPath/path.filename(), debugImage);
|
|
if(!ret)
|
|
Log(Log::WARN)<<"could not save debug image to "<<debugOutputPath/path.filename()<<" skipping";
|
|
}
|
|
|
|
cv::Mat croppedImage = image(crop);
|
|
cv::Mat resizedImage;
|
|
cv::resize(croppedImage, resizedImage, {512, 512}, 0, 0, cv::INTER_CUBIC);
|
|
bool ret = cv::imwrite(config.outputDir/path.filename(), resizedImage);
|
|
if(!ret)
|
|
Log(Log::WARN)<<"could not save image to "<<config.outputDir/path.filename()<<" skipping";
|
|
}
|
|
return 0;
|
|
}
|