Add chat datamodules
This commit is contained in:
123
datamodules.py
123
datamodules.py
@ -7,22 +7,23 @@ import transformers
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from tqdm import tqdm
|
||||
|
||||
from arguments import DataArguments
|
||||
from arguments import DataArguments, DatasetType
|
||||
|
||||
IGNORE_INDEX = -100
|
||||
|
||||
|
||||
def group_texts(examples, block_size: int):
|
||||
def group_texts(examples, source_max_len: int):
|
||||
# Concatenate all texts.
|
||||
concatenated_examples = {k: list(itertools.chain(*examples[k])) for k in examples.keys()}
|
||||
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
||||
# customize this part to your needs.
|
||||
if total_length >= block_size:
|
||||
total_length = (total_length // block_size) * block_size
|
||||
if total_length >= source_max_len:
|
||||
total_length = (total_length // source_max_len) * source_max_len
|
||||
# Split by chunks of max_len.
|
||||
result = {k: [t[i: i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items()}
|
||||
result = {k: [t[i: i + source_max_len] for i in range(0, total_length, source_max_len)] for k, t in concatenated_examples.items()}
|
||||
result["labels"] = result["input_ids"].copy()
|
||||
return result
|
||||
|
||||
@ -199,14 +200,15 @@ def create_data_module_hub(tokenizer: transformers.PreTrainedTokenizer, data_arg
|
||||
)
|
||||
|
||||
|
||||
def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments, do_train: bool, do_eval: bool, do_predict: bool) -> typing.Dict:
|
||||
def create_data_module_txt(tokenizer: transformers.PreTrainedTokenizer,
|
||||
data_args: DataArguments, do_train: bool, do_eval: bool, do_predict: bool) -> typing.Dict:
|
||||
try:
|
||||
dataset = datasets.load_dataset('text', data_files={'train': [data_args.dataset]})
|
||||
except FileNotFoundError as ex:
|
||||
raise ValueError(f"Error loading dataset from {data_args.dataset}, {ex}")
|
||||
|
||||
if data_args.block_size > tokenizer.model_max_length:
|
||||
raise ValueError(f"Block size of {data_args.block_size} is larger than the maximum size supported by the model: {tokenizer.model_max_length}")
|
||||
if data_args.source_max_len > tokenizer.model_max_length:
|
||||
raise ValueError(f"Max source length of {data_args.source_max_len} is larger than the maximum size supported by the model: {tokenizer.model_max_length}")
|
||||
|
||||
def add_newline_fn(example):
|
||||
example['text'] = example['text'] + '\n'
|
||||
@ -219,9 +221,7 @@ def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: D
|
||||
eval_dataset = dataset['eval']
|
||||
else:
|
||||
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
|
||||
dataset = dataset['train'].train_test_split(
|
||||
test_size=data_args.eval_dataset_size, shuffle=True, seed=42
|
||||
)
|
||||
dataset = dataset['train'].train_test_split(test_size=data_args.eval_dataset_size, shuffle=False)
|
||||
eval_dataset = dataset['test']
|
||||
|
||||
if 'train' in dataset:
|
||||
@ -233,14 +233,14 @@ def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: D
|
||||
lambda example: tokenizer(example['text']),
|
||||
batched=True,
|
||||
remove_columns='text',
|
||||
num_proc=32,
|
||||
num_proc=os.cpu_count(),
|
||||
load_from_cache_file=True)
|
||||
train_dataset_tokenized = train_dataset_tokenized.map(
|
||||
lambda example: group_texts(example, data_args.block_size),
|
||||
lambda example: group_texts(example, data_args.source_max_len),
|
||||
batched=True,
|
||||
num_proc=max(1, min(os.cpu_count(), int(len(train_dataset_tokenized['input_ids']) / (data_args.block_size * 10)))),
|
||||
num_proc=max(1, min(os.cpu_count(), int(len(train_dataset_tokenized['input_ids']) / (data_args.source_max_len * 10)))),
|
||||
load_from_cache_file=True,
|
||||
desc=f"Grouping texts in chunks of {data_args.block_size}")
|
||||
desc=f"Grouping texts in chunks of {data_args.source_max_len}")
|
||||
|
||||
eval_dataset_tokenized = None
|
||||
if eval_dataset is not None:
|
||||
@ -248,18 +248,18 @@ def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: D
|
||||
lambda example: tokenizer(example['text']),
|
||||
batched=True,
|
||||
remove_columns='text',
|
||||
num_proc=32)
|
||||
num_proc=os.cpu_count())
|
||||
eval_dataset_tokenized = eval_dataset_tokenized.map(
|
||||
lambda example: group_texts(example, data_args.block_size),
|
||||
lambda example: group_texts(example, data_args.source_max_len),
|
||||
batched=True,
|
||||
num_proc=max(1, min(os.cpu_count(), int(len(eval_dataset_tokenized['input_ids']) / (data_args.block_size * 10)))),
|
||||
num_proc=max(1, min(os.cpu_count(), int(len(eval_dataset_tokenized['input_ids']) / (data_args.source_max_len * 10)))),
|
||||
load_from_cache_file=True,
|
||||
desc=f"Grouping texts in chunks of {data_args.block_size}")
|
||||
desc=f"Grouping texts in chunks of {data_args.source_max_len}")
|
||||
|
||||
for ids in train_dataset_tokenized['input_ids']:
|
||||
assert len(ids) == data_args.block_size
|
||||
assert len(ids) == data_args.source_max_len
|
||||
for ids in eval_dataset_tokenized['input_ids']:
|
||||
assert len(ids) == data_args.block_size
|
||||
assert len(ids) == data_args.source_max_len
|
||||
|
||||
return dict(
|
||||
train_dataset=train_dataset_tokenized if do_train else None,
|
||||
@ -267,3 +267,84 @@ def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: D
|
||||
predict_dataset=eval_dataset_tokenized if do_predict else None,
|
||||
data_collator=transformers.default_data_collator
|
||||
)
|
||||
|
||||
|
||||
def create_data_module_chat(tokenizer, data_args, do_train, do_eval, do_predict):
|
||||
try:
|
||||
dataset = datasets.Dataset.from_json(path_or_paths=data_args.dataset)
|
||||
except FileNotFoundError as ex:
|
||||
raise ValueError(f"Error loading dataset from {data_args.dataset}, {ex}")
|
||||
|
||||
if data_args.dataset_chat_template is not None:
|
||||
tokenizer.chat_template = data_args.dataset_chat_template
|
||||
|
||||
target_len = data_args.source_max_len * 0.5
|
||||
grouped_chats = list()
|
||||
last_len = 0
|
||||
for row in tqdm(dataset, desc="Grouping chat messages"):
|
||||
content_length = len(tokenizer(row['content'])['input_ids'])
|
||||
if last_len + content_length <= target_len and len(grouped_chats) > 0:
|
||||
grouped_chats[-1]['chat'].append(row)
|
||||
last_len += content_length
|
||||
else:
|
||||
last_len = 0
|
||||
grouped_chats.append({'chat': [row]})
|
||||
dataset = datasets.Dataset.from_list(grouped_chats)
|
||||
dataset = dataset.map(lambda x: {"text": tokenizer.apply_chat_template(x["chat"], tokenize=False, add_generation_prompt=False)})
|
||||
dataset.remove_columns('chat')
|
||||
|
||||
eval_dataset = None
|
||||
if do_eval or do_predict:
|
||||
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
|
||||
dataset_split = dataset.train_test_split(test_size=data_args.eval_dataset_size, shuffle=True)
|
||||
train_dataset = dataset_split["train"]
|
||||
eval_dataset = dataset_split["test"]
|
||||
|
||||
data_collator = DataCollatorForCausalLMText(
|
||||
tokenizer=tokenizer,
|
||||
max_len=data_args.source_max_len,
|
||||
)
|
||||
return dict(
|
||||
train_dataset=train_dataset if do_train else None,
|
||||
eval_dataset=eval_dataset,
|
||||
predict_dataset=eval_dataset,
|
||||
data_collator=data_collator
|
||||
)
|
||||
|
||||
|
||||
def get_data_loaders(tokenizer, data_args: DataArguments, batch_size: int, eval_batch_size: int,
|
||||
do_train: bool, do_eval: bool, do_predict: bool = False):
|
||||
data_type = DatasetType.from_string(data_args.dataset_type)
|
||||
if data_type == DatasetType.S2S:
|
||||
print("Loading dataset in s2s mode")
|
||||
data_module = create_data_module_s2s(tokenizer, data_args, do_train, do_eval, do_predict)
|
||||
elif data_type == DatasetType.HUB:
|
||||
print("Loading dataset from hub, expecting alpaca style")
|
||||
data_module = create_data_module_hub(tokenizer, data_args, do_train, do_eval, do_predict)
|
||||
elif data_type == DatasetType.TEXT:
|
||||
print("Loading dataset in txt mode")
|
||||
data_module = create_data_module_txt(tokenizer, data_args, do_train, do_eval, do_predict)
|
||||
elif data_type == DatasetType.CHAT:
|
||||
print("Loading dataset in chat mode")
|
||||
data_module = create_data_module_chat(tokenizer, data_args, do_train, do_eval, do_predict)
|
||||
else:
|
||||
raise RuntimeError("Unkown dataset type")
|
||||
|
||||
train_dataloader = None
|
||||
eval_dataloader = None
|
||||
|
||||
if do_train:
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
data_module['train_dataset'],
|
||||
shuffle=True,
|
||||
collate_fn=data_module['data_collator'],
|
||||
batch_size=batch_size
|
||||
)
|
||||
if do_eval:
|
||||
eval_dataloader = torch.utils.data.DataLoader(
|
||||
data_module['eval_dataset'],
|
||||
shuffle=True,
|
||||
collate_fn=data_module['data_collator'],
|
||||
batch_size=eval_batch_size
|
||||
)
|
||||
return train_dataloader, eval_dataloader
|
||||
|
Reference in New Issue
Block a user