add gpu memory rebalanceing

This commit is contained in:
uvos 2024-03-17 22:54:33 +01:00
parent 5acb6809ed
commit 38a7f7cfc4
3 changed files with 78 additions and 39 deletions

View File

@ -3,6 +3,7 @@ import torch
from utils import replace_module
from modules import ConvertingLinear, Linear
from random import randint
import math
def find_all_linear_module_names(model) -> list[str]:
@ -30,8 +31,8 @@ class LinearGroup:
model_modules = dict(model.named_modules())
for name in group_names:
self.modules.append(model_modules[name])
assert isinstance(self.modules[0], ConvertingLinear)
assert isinstance(self.modules[-1], ConvertingLinear)
for module in self.modules:
assert isinstance(module, Linear)
def inplaceTo(self, dtype: torch.dtype = None, device: torch.device = None, output_device: torch.device = None) -> None:
for module in self.modules:
@ -54,6 +55,9 @@ class LinearGroup:
def paramCount(self) -> int:
return sum(p.numel() for p in self.parameters())
def getDevice(self) -> torch.device:
return self.modules[0].weight.device
class DyntrainModel:
def __init__(self, model_name_or_path: str, cache_dir: str,
@ -63,11 +67,17 @@ class DyntrainModel:
cache_dir=cache_dir,
torch_dtype=torch.float32,
trust_remote_code=trust_remote_code,
device_map=None,
device_map=None
)
self.model.model.embed_tokens = self.model.model.embed_tokens.to(torch.float16)
self.linear_groups = list()
self.target_active_params = target_active_params
self.devices = list()
if gradient_checkpointing:
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
self._prepare()
self.reshuffleActive()
@ -76,7 +86,7 @@ class DyntrainModel:
modules = dict(layer.named_modules())
for key in modules.keys():
if not isinstance(modules[key], torch.nn.Linear):
if not isinstance(modules[key], torch.nn.Linear) and len(list(modules[key].children())) == 0 or key == "lm_head":
names.append(key)
return names
@ -97,16 +107,26 @@ class DyntrainModel:
list_counter = list_counter + 1
return linear_groups
def isModuleIn16bitOutlist(key: str) -> bool:
key = key.split('.')[-1]
whitelist = set({
"gate_proj",
"up_proj",
"q_proj",
"k_proj",
"v_proj"})
return key in whitelist
def _prepare(self) -> None:
modules = dict(self.model.named_modules())
linear_groups = DyntrainModel._get_linear_group_names(self.model)
for group in linear_groups:
replace_module(self.model, group[0], ConvertingLinear.fromLinear(modules[group[0]].to(torch.float16), output_dtype=torch.float16))
replace_module(self.model, group[-1], ConvertingLinear.fromLinear(modules[group[-1]].to(torch.float16), output_dtype=torch.float32))
if len(group) > 2:
for index in range(1, len(group) - 1):
replace_module(self.model, group[index], Linear.fromLinear(modules[group[index]].to(torch.float16)))
for key in group:
if DyntrainModel.isModuleIn16bitOutlist(key):
replace_module(self.model, key, ConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=torch.float16))
else:
replace_module(self.model, key, ConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=torch.float32))
self.linear_groups.append(LinearGroup(self.model, group))
def dynamicParameters(self) -> list:
@ -133,7 +153,7 @@ class DyntrainModel:
def activeParameterCount(self) -> int:
total_params = self.dynamicParameters() + self.staticParameters()
return sum(p.numel() for p in total_params if total_params)
return sum(p.numel() for p in total_params if p.requires_grad)
def reshuffleActive(self) -> None:
for group in self.linear_groups:
@ -146,45 +166,56 @@ class DyntrainModel:
self.linear_groups[indecies[i]].setFrozen(False)
params += self.linear_groups[indecies[i]].paramCount()
indecies.pop(i)
print(math.ceil(params / 1e6))
for group in self.linear_groups:
if group.isFrozen():
group.inplaceTo(dtype=torch.float16)
else:
group.inplaceTo(dtype=torch.float32)
print(group.modules[0].weight.dtype)
active_params = self.activeParameterCount()
def toDevices(self, primary_device: torch.device, secondary_devices: list[torch.device]) -> None:
assert self.target_active_params * 1.3 > active_params and self.target_active_params * 0.7 < active_params
def balanceActive(self) -> None:
device_groups = list()
for index in range(0, len(self.devices)):
device_groups.append(list())
for group in self.linear_groups:
if not group.isFrozen():
device_groups[self.devices.index(group.getDevice())].append(group)
min_index, min_count = min(enumerate(len(grouplist) for grouplist in device_groups), key=lambda x: x[1])
max_index, max_count = max(enumerate(len(grouplist) for grouplist in device_groups), key=lambda x: x[1])
if max_count - 2 > min_count:
device_groups[max_index][0].inplaceTo(device=self.devices[min_index])
self.balanceActive()
def toDevices(self, devices: list[torch.device]) -> None:
assert len(devices) > 0
modules = dict(self.model.named_modules())
total_memory = sum(torch.cuda.get_device_properties(d).total_memory for d in secondary_devices)
total_memory += torch.cuda.get_device_properties(primary_device).total_memory * 0.8
total_memory = sum(torch.cuda.get_device_properties(d).total_memory for d in devices)
static_param_count = self.staticParameterCount()
total_parameter_count = static_param_count + self.dynamicParameterCount()
params_per_byte = total_parameter_count / float(total_memory)
print(f"{1/params_per_byte} bytes available per parameter")
print(f"{math.floor(1/params_per_byte)} bytes available per parameter")
breakpoint()
self.devices = devices
for key in DyntrainModel._get_nonlinear_names(self.model):
replace_module(self.model, key, modules[key].to(primary_device))
breakpoint()
replace_module(self.model, key, modules[key].to(devices[0]))
group_index = 0
params_for_primary = torch.cuda.get_device_properties(primary_device).total_memory * params_per_byte * 0.8 - static_param_count
primary_params = static_param_count
while params_for_primary > primary_params and group_index < len(self.linear_groups):
self.linear_groups[group_index].inplaceTo(device=primary_device)
primary_params += self.linear_groups[group_index].paramCount()
group_index += 1
for device in secondary_devices[:-1]:
params_for_device = torch.cuda.get_device_properties(primary_device).total_memory * params_per_byte
for device in devices[:-1]:
params_for_device = torch.cuda.get_device_properties(devices).total_memory * params_per_byte
params = 0
while params_for_device > params and group_index < len(self.linear_groups):
self.linear_groups[group_index].inplaceTo(device=device, output_device=primary_device)
self.linear_groups[group_index].inplaceTo(device=device)
params += self.linear_groups[group_index].paramCount()
group_index += 1
while group_index < len(self.linear_groups):
self.linear_groups[group_index].inplaceTo(device=secondary_devices[-1], output_device=primary_device)
self.linear_groups[group_index].inplaceTo(device=devices[-1])
group_index += 1

View File

@ -25,10 +25,16 @@ class Linear(torch.nn.Linear):
return not self.weight.requires_grad
def inplaceTo(self, dtype: torch.dtype = None, device: torch.device = None):
frozen = self.isFrozen()
if dtype is not None:
self.weight = torch.nn.Parameter(self.weight.to(dtype))
if self.bias is not None:
self.bias = torch.nn.Parameter(self.bias.to(dtype))
if device is not None:
self.weight = torch.nn.Parameter(self.weight.to(device))
if self.bias is not None:
self.bias = torch.nn.Parameter(self.bias.to(device))
self.setFrozen(frozen)
class ConvertingLinear(Linear):
@ -63,6 +69,6 @@ class ConvertingLinear(Linear):
if input.dtype != self.weight.dtype:
input = input.to(self.weight.dtype)
output = torch.nn.Linear.forward(self, input)
if torch.isnan(output).any() or self.weight.dtype != torch.float32:
if torch.isnan(output).any():
breakpoint()
return output.to(output_device).to(output_dtype)

View File

@ -61,13 +61,14 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
log_writer = tensorboard.SummaryWriter()
model = DyntrainModel(model_args.model_name_or_path, training_args.cache_dir, model_args.max_instant_params * 1e6, True, True)
model = model.toDevices(primary_device, [secondary_device])
model.toDevices([primary_device, secondary_device])
model.balanceActive()
paramter_count = sum(p.numel() for p in model.model.parameters())
active_paramter_count = sum(p.numel() for p in model.model.parameters() if p.requires_grad)
print(f"Training model with {paramter_count/1e6}m parameters and {active_paramter_count/1e6}m instantanous active paramters")
tokenizer = get_tokenizer(model, training_args.cache_dir, model_args)
tokenizer = get_tokenizer(model.model, training_args.cache_dir, model_args)
if data_args.dataset.endswith("json"):
print("Loading dataset in s2s mode")
@ -89,7 +90,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
batch_size=training_args.per_device_train_batch_size
) if dataset['eval_dataset'] is not None else None
dynamic_param_ratio = (model.staticParamterCount() + model.dynamicParameterCount()) / model.dynamicParameterCount()
dynamic_param_ratio = (model.staticParameterCount() + model.dynamicParameterCount()) / model.dynamicParameterCount()
steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps)
total_steps = steps_per_epoch * training_args.epochs
@ -111,14 +112,14 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
if training_args.do_train:
progress_bar = tqdm(range(total_steps))
global_step = 0
model.train()
model.model.train()
for epoch in range(0, training_args.epochs):
print("*** Train ***")
print(f'Vram used for model before training starts: {torch.cuda.memory_allocated()/(1024.0*1024.0)}')
for step, batch in enumerate(train_dataloader):
for key in batch:
batch[key] = batch[key].to("cuda:0")
outputs = model(**batch)
outputs = model.model(**batch)
loss = outputs.loss / training_args.gradient_accumulation_steps
log_writer.add_scalar("Loss/train", loss, global_step)
loss.backward()
@ -127,7 +128,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
optimizer.step()
lr_scheduler.step()
model.zero_grad()
model.model.zero_grad()
if global_step % 10 == 0:
print(loss)
@ -136,6 +137,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
lr_scheduler.optimizer = None
del optimizer
model.reshuffleActive()
model.balanceActive()
log_writer.add_scalar("Parameters/train", model.activeParameterCount(), global_step)
optimizer = get_optimizer(model.dynamicParameters(),
model.staticParameters(),
@ -150,7 +152,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
progress_bar.update()
if global_step % training_args.save_steps == 0:
save_model(model, global_step, training_args.output_dir, training_args.max_checkpoints)
save_model(model.model, global_step, training_args.output_dir, training_args.max_checkpoints)
if training_args.flush_allocator:
torch.cuda.empty_cache()
@ -158,7 +160,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
if training_args.do_eval:
print("*** Evaluate ***")
save_model(model, global_step, training_args.output_dir)
save_model(model.model, global_step, training_args.output_dir)
return