Files
QRotaryTraining/modules.py
2024-03-17 22:54:33 +01:00

75 lines
3.3 KiB
Python

import torch
class Linear(torch.nn.Linear):
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None):
super().__init__(in_features, out_features, bias, device, dtype)
@classmethod
def fromLinear(cls, in_module: torch.nn.Linear):
new_module = torch.nn.utils.skip_init(cls, in_features=in_module.in_features,
out_features=in_module.out_features,
bias=in_module.bias is not None,
device=in_module.weight.device,
dtype=in_module.weight.dtype)
new_module.weight = in_module.weight
new_module.bias = in_module.bias
return new_module
def setFrozen(self, frozen: bool):
self.weight.requires_grad = not frozen
if self.bias is not None:
self.bias.requires_grad = not frozen
def isFrozen(self) -> bool:
return not self.weight.requires_grad
def inplaceTo(self, dtype: torch.dtype = None, device: torch.device = None):
frozen = self.isFrozen()
if dtype is not None:
self.weight = torch.nn.Parameter(self.weight.to(dtype))
if self.bias is not None:
self.bias = torch.nn.Parameter(self.bias.to(dtype))
if device is not None:
self.weight = torch.nn.Parameter(self.weight.to(device))
if self.bias is not None:
self.bias = torch.nn.Parameter(self.bias.to(device))
self.setFrozen(frozen)
class ConvertingLinear(Linear):
def __init__(self,
in_features, out_features, bias=True, device=None, dtype=None,
output_dtype=None, output_device=None):
super().__init__(in_features, out_features, bias, device, dtype)
self.output_dtype = output_dtype
self.output_device = output_device
@classmethod
def fromLinear(cls, in_module: torch.nn.Linear, output_dtype, output_device=None):
new_module = torch.nn.utils.skip_init(cls, in_features=in_module.in_features,
out_features=in_module.out_features,
bias=in_module.bias is not None,
device=in_module.weight.device,
dtype=in_module.weight.dtype)
new_module.output_dtype = output_dtype
new_module.output_device = output_device
new_module.weight = in_module.weight
new_module.bias = in_module.bias
return new_module
def setOutputDevice(self, output_device: torch.device):
self.output_device = output_device
def forward(self, input: torch.Tensor):
output_dtype = input.dtype if self.output_dtype is None else self.output_dtype
output_device = input.device if self.output_device is None else self.output_device
if input.device != self.weight.device:
input = input.to(self.weight.device)
if input.dtype != self.weight.dtype:
input = input.to(self.weight.dtype)
output = torch.nn.Linear.forward(self, input)
if torch.isnan(output).any():
breakpoint()
return output.to(output_device).to(output_dtype)