add gpu memory rebalanceing

This commit is contained in:
2024-03-17 22:54:33 +01:00
parent 5acb6809ed
commit 38a7f7cfc4
3 changed files with 78 additions and 39 deletions

View File

@ -61,13 +61,14 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
log_writer = tensorboard.SummaryWriter()
model = DyntrainModel(model_args.model_name_or_path, training_args.cache_dir, model_args.max_instant_params * 1e6, True, True)
model = model.toDevices(primary_device, [secondary_device])
model.toDevices([primary_device, secondary_device])
model.balanceActive()
paramter_count = sum(p.numel() for p in model.model.parameters())
active_paramter_count = sum(p.numel() for p in model.model.parameters() if p.requires_grad)
print(f"Training model with {paramter_count/1e6}m parameters and {active_paramter_count/1e6}m instantanous active paramters")
tokenizer = get_tokenizer(model, training_args.cache_dir, model_args)
tokenizer = get_tokenizer(model.model, training_args.cache_dir, model_args)
if data_args.dataset.endswith("json"):
print("Loading dataset in s2s mode")
@ -89,7 +90,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
batch_size=training_args.per_device_train_batch_size
) if dataset['eval_dataset'] is not None else None
dynamic_param_ratio = (model.staticParamterCount() + model.dynamicParameterCount()) / model.dynamicParameterCount()
dynamic_param_ratio = (model.staticParameterCount() + model.dynamicParameterCount()) / model.dynamicParameterCount()
steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps)
total_steps = steps_per_epoch * training_args.epochs
@ -111,14 +112,14 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
if training_args.do_train:
progress_bar = tqdm(range(total_steps))
global_step = 0
model.train()
model.model.train()
for epoch in range(0, training_args.epochs):
print("*** Train ***")
print(f'Vram used for model before training starts: {torch.cuda.memory_allocated()/(1024.0*1024.0)}')
for step, batch in enumerate(train_dataloader):
for key in batch:
batch[key] = batch[key].to("cuda:0")
outputs = model(**batch)
outputs = model.model(**batch)
loss = outputs.loss / training_args.gradient_accumulation_steps
log_writer.add_scalar("Loss/train", loss, global_step)
loss.backward()
@ -127,7 +128,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
optimizer.step()
lr_scheduler.step()
model.zero_grad()
model.model.zero_grad()
if global_step % 10 == 0:
print(loss)
@ -136,6 +137,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
lr_scheduler.optimizer = None
del optimizer
model.reshuffleActive()
model.balanceActive()
log_writer.add_scalar("Parameters/train", model.activeParameterCount(), global_step)
optimizer = get_optimizer(model.dynamicParameters(),
model.staticParameters(),
@ -150,7 +152,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
progress_bar.update()
if global_step % training_args.save_steps == 0:
save_model(model, global_step, training_args.output_dir, training_args.max_checkpoints)
save_model(model.model, global_step, training_args.output_dir, training_args.max_checkpoints)
if training_args.flush_allocator:
torch.cuda.empty_cache()
@ -158,7 +160,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
if training_args.do_eval:
print("*** Evaluate ***")
save_model(model, global_step, training_args.output_dir)
save_model(model.model, global_step, training_args.output_dir)
return