add qunatized linear, refactor model for it soon to be addition

This commit is contained in:
uvos 2024-03-23 21:38:27 +01:00
parent 38a7f7cfc4
commit 3fa1fc254f
5 changed files with 191 additions and 71 deletions

View file

@ -1,30 +1,11 @@
from transformers import AutoModelForCausalLM
import torch
from utils import replace_module
from modules import ConvertingLinear, Linear
from modules import DynamicConvertingLinear, Linear
from random import randint
import math
def find_all_linear_module_names(model) -> list[str]:
module_names = set()
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear) or isinstance(module, ConvertingLinear):
module_names.add(name)
if 'lm_head' in module_names: # needed for 16-bit
module_names.remove('lm_head')
return list(module_names)
def find_all_outher_module_names(model) -> list[str]:
module_names = set()
for name, module in model.named_modules():
if not (isinstance(module, torch.nn.Linear) or isinstance(module, ConvertingLinear)):
module_names.add(name)
return list(module_names)
class LinearGroup:
def __init__(self, model, group_names: list):
self.modules = list()
@ -61,7 +42,7 @@ class LinearGroup:
class DyntrainModel:
def __init__(self, model_name_or_path: str, cache_dir: str,
target_active_params: int, gradient_checkpointing: bool, trust_remote_code: bool = False):
target_active_params: int, reshuffle_fraction: float, gradient_checkpointing: bool, trust_remote_code: bool = False):
self.model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
cache_dir=cache_dir,
@ -69,16 +50,30 @@ class DyntrainModel:
trust_remote_code=trust_remote_code,
device_map=None
)
self.model.model.embed_tokens = self.model.model.embed_tokens.to(torch.float16)
self.linear_groups = list()
self.target_active_params = target_active_params
self.reshuffle_fraction = reshuffle_fraction
if reshuffle_fraction < 0.10 or reshuffle_fraction > 1:
raise RuntimeError("reshuffle_percent must be between 0.1 and 1.0")
self.devices = list()
if gradient_checkpointing:
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
self._prepare()
modules = dict(self.model.named_modules())
self.frozen_linear_groups = list()
self.active_linear_groups = list()
linear_group_names = DyntrainModel._get_linear_group_names(self.model)
for group in linear_group_names:
for key in group:
if DyntrainModel.isModuleIn16bitOutlist(key):
replace_module(self.model, key, DynamicConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=torch.float16))
else:
replace_module(self.model, key, DynamicConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=torch.float32))
self.frozen_linear_groups.append(LinearGroup(self.model, group))
self.model.model.embed_tokens = self.model.model.embed_tokens.to(torch.float16)
for group in self.frozen_linear_groups:
group.setFrozen(True)
self.reshuffleActive()
def _get_nonlinear_names(layer: torch.nn.Module):
@ -117,21 +112,9 @@ class DyntrainModel:
"v_proj"})
return key in whitelist
def _prepare(self) -> None:
modules = dict(self.model.named_modules())
linear_groups = DyntrainModel._get_linear_group_names(self.model)
for group in linear_groups:
for key in group:
if DyntrainModel.isModuleIn16bitOutlist(key):
replace_module(self.model, key, ConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=torch.float16))
else:
replace_module(self.model, key, ConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=torch.float32))
self.linear_groups.append(LinearGroup(self.model, group))
def dynamicParameters(self) -> list:
parameters = list()
for group in self.linear_groups:
for group in self.frozen_linear_groups + self.active_linear_groups:
parameters.extend(group.parameters())
return parameters
@ -156,23 +139,24 @@ class DyntrainModel:
return sum(p.numel() for p in total_params if p.requires_grad)
def reshuffleActive(self) -> None:
for group in self.linear_groups:
active_count = len(self.active_linear_groups)
while len(self.active_linear_groups) > active_count * (1 - self.reshuffle_fraction):
group = self.active_linear_groups.pop(0)
group.setFrozen(True)
self.frozen_linear_groups.append(group)
indecies = list(range(0, len(self.linear_groups)))
params = self.staticParameterCount()
while params < self.target_active_params and len(indecies) > 0:
i = randint(0, len(indecies) - 1)
self.linear_groups[indecies[i]].setFrozen(False)
params += self.linear_groups[indecies[i]].paramCount()
indecies.pop(i)
params = self.activeParameterCount()
if params >= self.target_active_params:
RuntimeError("Insuficant active parameters to suffle active")
while params < self.target_active_params and len(self.frozen_linear_groups) > 0:
i = randint(0, len(self.frozen_linear_groups) - 1)
group = self.frozen_linear_groups.pop(i)
group.setFrozen(False)
params += group.paramCount()
self.active_linear_groups.append(group)
print(math.ceil(params / 1e6))
for group in self.linear_groups:
if group.isFrozen():
group.inplaceTo(dtype=torch.float16)
else:
group.inplaceTo(dtype=torch.float32)
active_params = self.activeParameterCount()
assert self.target_active_params * 1.3 > active_params and self.target_active_params * 0.7 < active_params
@ -182,9 +166,8 @@ class DyntrainModel:
for index in range(0, len(self.devices)):
device_groups.append(list())
for group in self.linear_groups:
if not group.isFrozen():
device_groups[self.devices.index(group.getDevice())].append(group)
for group in self.active_linear_groups:
device_groups[self.devices.index(group.getDevice())].append(group)
min_index, min_count = min(enumerate(len(grouplist) for grouplist in device_groups), key=lambda x: x[1])
max_index, max_count = max(enumerate(len(grouplist) for grouplist in device_groups), key=lambda x: x[1])
@ -207,15 +190,17 @@ class DyntrainModel:
for key in DyntrainModel._get_nonlinear_names(self.model):
replace_module(self.model, key, modules[key].to(devices[0]))
linear_groups = self.active_linear_groups + self.frozen_linear_groups
group_index = 0
for device in devices[:-1]:
params_for_device = torch.cuda.get_device_properties(devices).total_memory * params_per_byte
params = 0
while params_for_device > params and group_index < len(self.linear_groups):
self.linear_groups[group_index].inplaceTo(device=device)
params += self.linear_groups[group_index].paramCount()
while params_for_device > params and group_index < len(linear_groups):
linear_groups[group_index].inplaceTo(device=device)
params += linear_groups[group_index].paramCount()
group_index += 1
while group_index < len(self.linear_groups):
self.linear_groups[group_index].inplaceTo(device=devices[-1])
while group_index < len(linear_groups):
linear_groups[group_index].inplaceTo(device=devices[-1])
group_index += 1