add qunatized linear, refactor model for it soon to be addition

This commit is contained in:
2024-03-23 21:38:27 +01:00
parent 38a7f7cfc4
commit 3fa1fc254f
5 changed files with 191 additions and 71 deletions

View File

@ -1,4 +1,8 @@
import torch
import bitsandbytes as bnb
import torch.multiprocessing as multiprocessing
from typing import overload, Optional, Union
from functools import wraps
class Linear(torch.nn.Linear):
@ -34,12 +38,22 @@ class Linear(torch.nn.Linear):
self.weight = torch.nn.Parameter(self.weight.to(device))
if self.bias is not None:
self.bias = torch.nn.Parameter(self.bias.to(device))
self.setFrozen(frozen)
Linear.setFrozen(self, frozen)
def _apply(self, fn, recurse: bool = True):
if fn.__name__ == "convert":
return self
else:
return super()._apply(fn, recurse)
@wraps(torch.nn.Module.to)
def to(self, *args, **kwargs):
breakpoint()
return self
class ConvertingLinear(Linear):
def __init__(self,
in_features, out_features, bias=True, device=None, dtype=None,
class DynamicConvertingLinear(Linear):
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None,
output_dtype=None, output_device=None):
super().__init__(in_features, out_features, bias, device, dtype)
self.output_dtype = output_dtype
@ -58,6 +72,14 @@ class ConvertingLinear(Linear):
new_module.bias = in_module.bias
return new_module
def setFrozen(self, frozen: bool):
super().setFrozen(frozen)
if frozen:
self.inplaceTo(torch.float16)
else:
self.inplaceTo(torch.float32)
def setOutputDevice(self, output_device: torch.device):
self.output_device = output_device
@ -69,6 +91,101 @@ class ConvertingLinear(Linear):
if input.dtype != self.weight.dtype:
input = input.to(self.weight.dtype)
output = torch.nn.Linear.forward(self, input)
if torch.isnan(output).any():
breakpoint()
return output.to(output_device).to(output_dtype)
class DynamicQantizedLinear(Linear):
def __init__(self, in_features: int, out_features: int, bias: bool, active_device: torch.device, cold_device: torch.device,
output_dtype=None, compute_dtype=None, output_device=None):
super().__init__(in_features, out_features, bias, cold_device, torch.float32)
self.active_device = active_device
self.cold_device = cold_device
self.output_device = output_device
self.output_dtype = output_dtype
self.compute_dtype = compute_dtype
self.weight_quantized = None
self.weight_state = None
self.bias_quantized = None
self.bias_state = None
self.block_size = 128
self.quant_type = 'nf4'
@classmethod
def fromLinear(cls, in_module: torch.nn.Linear, active_device: torch.device, cold_device: torch.device,
output_dtype=None, compute_dtype=torch.float16, output_device=None):
new_module = cls(in_features=in_module.in_features, out_features=in_module.out_features, bias=in_module.bias is not None,
active_device=active_device, cold_device=cold_device, output_dtype=output_dtype,
compute_dtype=compute_dtype, output_device=output_device)
new_module.weight = torch.nn.Parameter(in_module.weight.to(torch.float32).to(cold_device))
new_module.bias = torch.nn.Parameter(in_module.bias.to(torch.float32).to(cold_device)) if new_module.bias is not None else None
return new_module
def quantize(self):
weight = self.weight.contiguous().to(torch.float16).cuda(self.active_device)
self.weight_quantized, self.weight_state = bnb.functional.quantize_4bit(weight, blocksize=self.block_size,
compress_statistics=False, quant_type=self.quant_type)
if self.bias is not None:
bias = self.bias.contiguous().to(torch.float16).cuda(self.active_device)
self.bias_quantized, self.bias_state = bnb.functional.quantize_4bit(bias, blocksize=self.block_size,
compress_statistics=False, quant_type=self.quant_type)
weight = torch.nn.Parameter(self.weight.to(self.cold_device))
bias = torch.nn.Parameter(self.bias.to(self.cold_device)) if self.bias is not None else None
def dequantize(self):
if self.weight_quantized is None:
raise RuntimeError("forward() called in quantized stated before quantized weights are avialable")
dtype = self.weight.dtype
self.weight = torch.nn.Parameter(bnb.functional.dequantize_fp4(self.weight_quantized, self.weight_state).to(dtype).to(self.active_device))
if self.bias_quantized:
self.bias = torch.nn.Parameter(bnb.functional.dequantize_fp4(self.bias_quantized, self.bias_state).to(dtype).to(self.active_device))
self.weight_quantized = None
self.weight_state = None
self.bias_quantized = None
self.bias_state = None
def checkDistance(self) -> float:
if self.weight_quantized is None:
raise RuntimeError("checkDistance() called without quantized weights avialable")
original_weight = self.weight.contiguous().to(torch.float16).cuda(self.active_device)
quantized_original_weight, quantized_original_state = bnb.functional.quantize_4bit(original_weight,
blocksize=self.block_size,
compress_statistics=True,
quant_type=self.quant_type)
dequantized_original_weight = bnb.functional.dequantize_fp4(quantized_original_weight, quantized_original_state).to(original_weight.dtype)
dequantized_weight = bnb.functional.dequantize_fp4(self.weight_quantized, self.weight_state).to(original_weight.dtype)
return (torch.linalg.vector_norm(dequantized_original_weight - dequantized_weight) / dequantized_original_weight.numel()).item()
def setOutputDevice(self, output_device: torch.device):
self.output_device = output_device
def setFrozen(self, frozen: bool) -> None:
if frozen == self.isFrozen():
return
super().setFrozen(frozen)
if frozen:
self.quantize()
else:
self.dequantize()
def forward(self, x: torch.Tensor):
output_dtype = x.dtype if self.output_dtype is None else self.output_dtype
output_device = x.device if self.output_device is None else self.output_device
if not self.isFrozen():
if x.device != self.weight.device:
x = x.to(self.weight.device)
if x.dtype != self.weight.dtype:
x = x.to(self.weight.dtype)
return super().forward(x).to(output_device).to(output_dtype)
else:
if self.weight_quantized is None:
raise RuntimeError("forward() called in quantized stated before quantized weights are avialable")
bias = None
if self.bias_quantized is not None:
bias = bnb.functional.dequantize_fp4(self.bias_quantized, self.bias_state).to(x.dtype)
out = bnb.matmul_4bit(x, self.weight_quantized.t(), bias=bias, quant_state=self.weight_state)
return out.to(output_device).to(output_dtype)