Fix mypy warnings
This commit is contained in:
parent
a74ef976e4
commit
68f748e99e
13
arguments.py
13
arguments.py
@ -4,6 +4,9 @@ from typing import Optional
|
||||
|
||||
@dataclass
|
||||
class DataArguments:
|
||||
dataset: str = field(
|
||||
metadata={"help": "A json file (s2s) or text file with the dataset to train on"}
|
||||
)
|
||||
eval_dataset_size: int = field(
|
||||
default=512, metadata={"help": "Size of validation dataset."}
|
||||
)
|
||||
@ -23,10 +26,6 @@ class DataArguments:
|
||||
default=False,
|
||||
metadata={"help": "If this is set the dataset is assumed to be a name of a hf-hub dataset"}
|
||||
)
|
||||
dataset: str = field(
|
||||
default=None,
|
||||
metadata={"help": "A json file (s2s) or text file with the dataset to train on"}
|
||||
)
|
||||
block_size: int = field(
|
||||
default=512,
|
||||
metadata={"help": "size of the blocks the text is split into for training"},
|
||||
@ -35,7 +34,7 @@ class DataArguments:
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
model_name_or_path: Optional[str] = field(
|
||||
model_name_or_path: str = field(
|
||||
default="EleutherAI/pythia-12b"
|
||||
)
|
||||
tokenizer: Optional[str] = field(
|
||||
@ -49,10 +48,10 @@ class ModelArguments:
|
||||
default=False,
|
||||
metadata={"help": "Never resize tokenizer embeddings"}
|
||||
)
|
||||
quantize: Optional[bool] = field (
|
||||
quantize: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Quantize parameters not currently be actively trained"}
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -16,7 +16,7 @@ class LinearGroup:
|
||||
for module in self.modules:
|
||||
assert isinstance(module, Linear)
|
||||
|
||||
def inplaceTo(self, dtype: torch.dtype = None, device: torch.device = None, output_device: torch.device = None) -> None:
|
||||
def inplaceTo(self, dtype: torch.dtype | None = None, device: torch.device | None = None, output_device: torch.device | None = None) -> None:
|
||||
for module in self.modules:
|
||||
module.inplaceTo(dtype, device)
|
||||
self.modules[-1].setOutputDevice(output_device)
|
||||
@ -67,7 +67,7 @@ class LinearGroup:
|
||||
|
||||
|
||||
class DyntrainModel:
|
||||
def __init__(self, model_name_or_path: str, cache_dir: str, quantize: bool,
|
||||
def __init__(self, model_name_or_path: str, cache_dir: str | None, quantize: bool,
|
||||
target_active_params: int, reshuffle_fraction: float, gradient_checkpointing: bool, trust_remote_code: bool = False):
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name_or_path,
|
||||
@ -80,19 +80,19 @@ class DyntrainModel:
|
||||
self.reshuffle_fraction = reshuffle_fraction
|
||||
if reshuffle_fraction < 0.10 or reshuffle_fraction > 1:
|
||||
raise RuntimeError("reshuffle_percent must be between 0.1 and 1.0")
|
||||
self.devices = list()
|
||||
self.devices = list[torch.device]()
|
||||
self.inital_reshufle = True
|
||||
|
||||
if gradient_checkpointing:
|
||||
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
|
||||
|
||||
self.frozen_linear_groups = list()
|
||||
self.active_linear_groups = list()
|
||||
self.frozen_linear_groups = list[LinearGroup]()
|
||||
self.active_linear_groups = list[LinearGroup]()
|
||||
|
||||
linear_group_names = DyntrainModel._getLinearGroupNames(self.model)
|
||||
for group in linear_group_names:
|
||||
for key in group:
|
||||
replace_module(self.model, key, self._getModule(key, quantize, "cuda:0", "cpu"))
|
||||
replace_module(self.model, key, self._getModule(key, quantize, torch.device("cuda:0"), torch.device("cpu")))
|
||||
self.frozen_linear_groups.append(LinearGroup(self.model, group))
|
||||
self.model.model.embed_tokens = self.model.model.embed_tokens.to(torch.float16)
|
||||
for group in self.frozen_linear_groups:
|
||||
@ -106,6 +106,7 @@ class DyntrainModel:
|
||||
else:
|
||||
return DynamicConvertingLinear.fromLinear(modules[key].to(torch.float16), output_dtype=output_dtype)
|
||||
|
||||
@staticmethod
|
||||
def _getNonlinearNames(layer: torch.nn.Module):
|
||||
names = list()
|
||||
modules = dict(layer.named_modules())
|
||||
@ -115,8 +116,9 @@ class DyntrainModel:
|
||||
names.append(key)
|
||||
return names
|
||||
|
||||
@staticmethod
|
||||
def _getLinearGroupNames(layer: torch.nn.Module) -> list[list[str]]:
|
||||
linear_groups = list()
|
||||
linear_groups = list[list[str]]()
|
||||
list_counter = 0
|
||||
in_sequence = False
|
||||
modules = dict(layer.named_modules())
|
||||
@ -132,6 +134,7 @@ class DyntrainModel:
|
||||
list_counter = list_counter + 1
|
||||
return linear_groups
|
||||
|
||||
@staticmethod
|
||||
def isModuleIn16bitOutlist(key: str) -> bool:
|
||||
key = key.split('.')[-1]
|
||||
whitelist = set({
|
||||
@ -210,7 +213,7 @@ class DyntrainModel:
|
||||
for i, count in enumerate(active_counts):
|
||||
memory = torch.cuda.get_device_properties(self.devices[i]).total_memory
|
||||
if i == 0:
|
||||
memory = memory * 0.8
|
||||
memory = int(memory * 0.8)
|
||||
bits_per_param.append(count / memory)
|
||||
|
||||
max_index, max_bits_per_param = max(enumerate(active_counts), key=lambda x: x[1])
|
||||
@ -220,7 +223,7 @@ class DyntrainModel:
|
||||
if group.getDevice() is self.devices[max_index]:
|
||||
memory = torch.cuda.get_device_properties(self.devices[max_index]).total_memory
|
||||
if max_index == 0:
|
||||
memory = memory * 0.8
|
||||
memory = int(memory * 0.8)
|
||||
swing = group.paramCount() / memory
|
||||
if max_bits_per_param - swing > min_bits_per_param + swing:
|
||||
group.inplaceTo(device=self.devices[min_index])
|
||||
@ -230,7 +233,7 @@ class DyntrainModel:
|
||||
assert len(devices) > 0
|
||||
modules = dict(self.model.named_modules())
|
||||
total_memory = sum(torch.cuda.get_device_properties(d).total_memory for d in devices)
|
||||
total_memory -= torch.cuda.get_device_properties(devices[0]).total_memory * 0.2
|
||||
total_memory -= int(torch.cuda.get_device_properties(devices[0]).total_memory * 0.2)
|
||||
static_param_count = self.staticParameterCount()
|
||||
total_parameter_count = static_param_count + self.dynamicParameterCount()
|
||||
params_per_byte = total_parameter_count / float(total_memory)
|
||||
@ -245,9 +248,9 @@ class DyntrainModel:
|
||||
|
||||
group_index = 0
|
||||
for i, device in enumerate(devices[:-1]):
|
||||
memory = torch.cuda.get_device_properties(devices).total_memory
|
||||
memory = torch.cuda.get_device_properties(device).total_memory
|
||||
if i == 0:
|
||||
memory = memory * 0.8
|
||||
memory = int(memory * 0.8)
|
||||
params_for_device = memory * params_per_byte
|
||||
params = 0
|
||||
while params_for_device > params and group_index < len(linear_groups):
|
||||
|
@ -39,7 +39,7 @@ class Linear(torch.nn.Linear):
|
||||
def isFrozen(self) -> bool:
|
||||
return not self.weight.requires_grad
|
||||
|
||||
def inplaceTo(self, dtype: torch.dtype = None, device: torch.device = None):
|
||||
def inplaceTo(self, dtype: torch.dtype | None = None, device: torch.device | None = None):
|
||||
frozen = self.isFrozen()
|
||||
if dtype is not None:
|
||||
self.weight = torch.nn.Parameter(self.weight.to(dtype))
|
||||
@ -77,7 +77,7 @@ class DynamicConvertingLinear(Linear):
|
||||
self.output_device = output_device
|
||||
|
||||
@classmethod
|
||||
def fromLinear(cls, in_module: torch.nn.Linear, output_dtype, output_device=None):
|
||||
def fromLinear(cls, in_module: torch.nn.Linear, output_dtype=torch.float32, output_device=None):
|
||||
new_module = torch.nn.utils.skip_init(cls, in_features=in_module.in_features,
|
||||
out_features=in_module.out_features,
|
||||
bias=in_module.bias is not None,
|
||||
@ -124,7 +124,7 @@ class DynamicQantizedLinear(Linear):
|
||||
self.weight_start = self.weight.clone().detach()
|
||||
|
||||
@classmethod
|
||||
def fromLinear(cls, in_module: torch.nn.Linear, active_device: torch.device, cold_device: torch.device,
|
||||
def fromLinear(cls, in_module: torch.nn.Linear, active_device: torch.device = torch.device("cuda:0"), cold_device: torch.device = torch.device("cpu"),
|
||||
output_dtype=None, compute_dtype=torch.float16, output_device=None):
|
||||
new_module = cls(in_features=in_module.in_features, out_features=in_module.out_features, bias=in_module.bias is not None,
|
||||
active_device=active_device, cold_device=cold_device, output_dtype=output_dtype,
|
||||
@ -193,7 +193,7 @@ class DynamicQantizedLinear(Linear):
|
||||
|
||||
return out.to(output_device).to(output_dtype)
|
||||
|
||||
def inplaceTo(self, dtype: torch.dtype = None, device: torch.device = None):
|
||||
def inplaceTo(self, dtype: torch.dtype | None = None, device: torch.device | None = None):
|
||||
if dtype is not None:
|
||||
super().inplaceTo(dtype=dtype)
|
||||
if device is not None:
|
||||
|
@ -22,22 +22,22 @@ def save_model(model, global_step: int, output_dir: str, max_checkpoints: int =
|
||||
model.save_pretrained(output_dir)
|
||||
|
||||
if max_checkpoints > 0:
|
||||
files = [f for f in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, f)) and f.starts_with("step_")]
|
||||
files = [f for f in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, f)) and f.startswith("step_")]
|
||||
|
||||
def extract_step(filename):
|
||||
tokens = filename.split('_')
|
||||
return int(tokens[1])
|
||||
|
||||
if len(files) > max_checkpoints:
|
||||
min_step = min(map(extract_step, extract_step))
|
||||
min_step = min(map(extract_step, files))
|
||||
delete_checkpoit_dir = os.path.join(output_dir, f"step_{min_step}")
|
||||
print(f"there are more than {max_checkpoints} checkpints saved, deleting {delete_checkpoit_dir}")
|
||||
shutil.rmtree(delete_checkpoit_dir)
|
||||
|
||||
|
||||
def get_optimizer(dyamic_parameters: list[torch.nn.parameter], static_parameters: list[torch.nn.parameter], lr: float, static_lr: float,
|
||||
def get_optimizer(dyamic_parameters: list[torch.nn.Parameter], static_parameters: list[torch.nn.Parameter] | None, lr: float, static_lr: float,
|
||||
weight_decay: float, eps: float, adam8bit: bool):
|
||||
parameters = list()
|
||||
parameters = list[dict]()
|
||||
parameters.extend({'params': p} for p in dyamic_parameters if p.requires_grad)
|
||||
param_ids = set([id(p['params']) for p in parameters])
|
||||
if static_parameters is not None:
|
||||
@ -71,6 +71,7 @@ def evaluate(model: DyntrainModel, tokenizer,
|
||||
loss = loss / len(dataloader)
|
||||
log_writer.add_scalar("Loss/Eval", loss, globalstep)
|
||||
print(f"Eval Loss {loss.item()}")
|
||||
return loss.item()
|
||||
|
||||
if eval_prompt is not None:
|
||||
input_ids = tokenizer(eval_prompt, return_tensors="pt").input_ids.to(model.devices[0])
|
||||
@ -84,7 +85,7 @@ def evaluate(model: DyntrainModel, tokenizer,
|
||||
def train(model_args: ModelArguments, data_args: DataArguments, training_args: TrainingArguments):
|
||||
log_writer = tensorboard.SummaryWriter()
|
||||
|
||||
model = DyntrainModel(model_args.model_name_or_path, training_args.cache_dir, target_active_params=training_args.max_instant_params * 1e6,
|
||||
model = DyntrainModel(model_args.model_name_or_path, training_args.cache_dir, target_active_params=int(training_args.max_instant_params * 1e6),
|
||||
reshuffle_fraction=training_args.churn_percent / 100.0, gradient_checkpointing=True, trust_remote_code=True,
|
||||
quantize=model_args.quantize)
|
||||
devices = list(torch.device(i) for i in range(0, torch.cuda.device_count()))
|
||||
@ -95,7 +96,8 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
|
||||
paramter_count = sum(p.numel() for p in model.model.parameters())
|
||||
active_paramter_count = sum(p.numel() for p in model.model.parameters() if p.requires_grad)
|
||||
static_parameter_count = model.staticParameterCount() if training_args.train_non_linear_layers else 0
|
||||
print(f"Training model with {paramter_count/1e6}m parameters and {active_paramter_count/1e6}m instantanous active paramters of which {static_parameter_count} are static")
|
||||
print(f"Training model with {paramter_count / 1e6}m parameters and {active_paramter_count / 1e6}m"
|
||||
f"instantanous active paramters of which {static_parameter_count} are static")
|
||||
|
||||
tokenizer = get_tokenizer(model.model, training_args.cache_dir, model_args)
|
||||
|
||||
@ -122,7 +124,7 @@ def train(model_args: ModelArguments, data_args: DataArguments, training_args: T
|
||||
) if dataset['eval_dataset'] is not None else None
|
||||
|
||||
dynamic_param_ratio = (model.staticParameterCount() + model.dynamicParameterCount()) / model.dynamicParameterCount()
|
||||
steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps)
|
||||
steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps) if train_dataloader is not None else 1
|
||||
total_steps = steps_per_epoch * training_args.epochs
|
||||
|
||||
optimizer = get_optimizer(model.dynamicParameters(),
|
||||
|
Loading…
x
Reference in New Issue
Block a user