imlement 8bit quantization
This commit is contained in:
parent
c33964371c
commit
6b38cfabf8
25
modules.py
25
modules.py
@ -32,7 +32,6 @@ class Linear(torch.nn.Linear):
|
||||
self.bias.requires_grad = not frozen
|
||||
if convert:
|
||||
if frozen:
|
||||
breakpoint()
|
||||
self.compress()
|
||||
else:
|
||||
self.decompress()
|
||||
@ -130,12 +129,10 @@ class DynamicQantizedLinear(Linear):
|
||||
|
||||
def compress(self) -> None:
|
||||
weight = self.weight.contiguous().to(torch.float16).cuda(self.active_device)
|
||||
self.weight_quantized, self.weight_state = bnb.functional.quantize_4bit(weight, blocksize=self.block_size,
|
||||
compress_statistics=False, quant_type=self.quant_type)
|
||||
self.weight_quantized, self.weight_state = bnb.functional.quantize_blockwise(weight, blocksize=self.block_size)
|
||||
if self.bias is not None:
|
||||
bias = self.bias.contiguous().to(torch.float16).cuda(self.active_device)
|
||||
self.bias_quantized, self.bias_state = bnb.functional.quantize_4bit(bias, blocksize=self.block_size,
|
||||
compress_statistics=False, quant_type=self.quant_type)
|
||||
self.bias_quantized, self.bias_state = bnb.functional.quantize_blockwise(bias, blocksize=self.block_size)
|
||||
|
||||
weight = torch.nn.Parameter(self.weight.to(self.cold_device))
|
||||
bias = torch.nn.Parameter(self.bias.to(self.cold_device)) if self.bias is not None else None
|
||||
@ -144,9 +141,9 @@ class DynamicQantizedLinear(Linear):
|
||||
if self.weight_quantized is None:
|
||||
raise RuntimeError("decompress() called in quantized stated before quantized weights are avialable")
|
||||
dtype = self.weight.dtype
|
||||
self.weight = torch.nn.Parameter(bnb.functional.dequantize_fp4(self.weight_quantized, self.weight_state).to(dtype).to(self.active_device))
|
||||
self.weight = torch.nn.Parameter(bnb.functional.dequantize_blockwise(self.weight_quantized, self.weight_state).to(dtype).to(self.active_device))
|
||||
if self.bias_quantized:
|
||||
self.bias = torch.nn.Parameter(bnb.functional.dequantize_fp4(self.bias_quantized, self.bias_state).to(dtype).to(self.active_device))
|
||||
self.bias = torch.nn.Parameter(bnb.functional.dequantize_blockwise(self.bias_quantized, self.bias_state).to(dtype).to(self.active_device))
|
||||
|
||||
def checkDistance(self) -> tuple[float, float]:
|
||||
if self.weight_quantized is None:
|
||||
@ -156,8 +153,8 @@ class DynamicQantizedLinear(Linear):
|
||||
blocksize=self.block_size,
|
||||
compress_statistics=True,
|
||||
quant_type=self.quant_type)
|
||||
dequantized_original_weight = bnb.functional.dequantize_fp4(quantized_original_weight, quantized_original_state).to(original_weight.dtype)
|
||||
dequantized_weight = bnb.functional.dequantize_fp4(self.weight_quantized, self.weight_state).to(original_weight.dtype)
|
||||
dequantized_original_weight = bnb.functional.dequantize_blockwise(self.weight_quantized, self.weight_state).to(original_weight.dtype)
|
||||
dequantized_weight = bnb.functional.dequantize_blockwise(self.weight_quantized, self.weight_state).to(original_weight.dtype)
|
||||
distance = (torch.linalg.vector_norm(dequantized_original_weight - dequantized_weight).to(torch.float32) / dequantized_original_weight.numel()).item()
|
||||
error = (torch.linalg.vector_norm(dequantized_original_weight - original_weight).to(torch.float32) / dequantized_original_weight.numel()).item()
|
||||
return (distance, error)
|
||||
@ -180,10 +177,14 @@ class DynamicQantizedLinear(Linear):
|
||||
raise RuntimeError("forward() called in quantized stated before quantized weights are avialable")
|
||||
if x.device != self.weight_quantized.device:
|
||||
x = x.to(self.weight_quantized.device)
|
||||
bias = None
|
||||
weight = bnb.functional.dequantize_blockwise(self.weight_quantized, self.weight_state).to(x.dtype)
|
||||
out = torch.matmul(x, weight.t())
|
||||
if self.bias_quantized is not None:
|
||||
bias = bnb.functional.dequantize_fp4(self.bias_quantized, self.bias_state).to(x.dtype)
|
||||
out = bnb.matmul_4bit(x, self.weight_quantized.t(), bias=bias, quant_state=self.weight_state)
|
||||
bias = bnb.functional.dequantize_blockwise(self.bias_quantized, self.bias_state).to(x.dtype)
|
||||
out = out + bias
|
||||
|
||||
if torch.isnan(out).sum().item() > 0:
|
||||
breakpoint()
|
||||
|
||||
return out.to(output_device).to(output_dtype)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user