add support for huggingfacehub datasets and for specificying a prompt for eval

This commit is contained in:
2024-05-07 00:23:12 +02:00
parent 8abea9ef89
commit a74ef976e4
5 changed files with 183 additions and 43 deletions

View File

@ -27,7 +27,44 @@ def group_texts(examples, block_size: int):
@dataclass
class DataCollatorForCausalLM(object):
class DataCollatorForCausalLMText(object):
tokenizer: transformers.PreTrainedTokenizer
max_len: int
def __call__(self, instances: typing.Sequence[typing.Dict]) -> typing.Dict[str, torch.Tensor]:
# Extract elements
examples = [f"{self.tokenizer.bos_token}{example['text']}{self.tokenizer.eos_token}" for example in instances]
# Tokenize
tokenized_examples = self.tokenizer(
examples,
max_length=self.max_len,
truncation=True,
add_special_tokens=False,
)
# Build the input and labels for causal LM
input_ids = []
for tokenized_example in tokenized_examples['input_ids']:
input_ids.append(torch.tensor(tokenized_example))
# Apply padding
padding_value = None
if self.tokenizer.pad_token_id is not None:
padding_value = self.tokenizer.pad_token_id
elif self.tokenizer.eos_token_id is not None:
padding_value = self.tokenizer.eos_token_id
else:
raise RuntimeError("Model dose not have a pad or eos token")
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=padding_value)
data_dict = {
'input_ids': input_ids,
'attention_mask': input_ids.ne(padding_value),
'labels': input_ids
}
return data_dict
@dataclass
class DataCollatorForCausalLMs2s(object):
tokenizer: transformers.PreTrainedTokenizer
source_max_len: int
target_max_len: int
@ -102,7 +139,7 @@ def create_data_module_s2s(tokenizer: transformers.PreTrainedTokenizer, data_arg
test_size=data_args.eval_dataset_size, shuffle=True, seed=42
)
eval_dataset = dataset['test']
eval_dataset = eval_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
eval_dataset = eval_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
if 'train' in dataset:
train_dataset = dataset['train']
@ -111,7 +148,7 @@ def create_data_module_s2s(tokenizer: transformers.PreTrainedTokenizer, data_arg
train_dataset = train_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
data_collator = DataCollatorForCausalLM(
data_collator = DataCollatorForCausalLMs2s(
tokenizer=tokenizer,
source_max_len=data_args.source_max_len,
target_max_len=data_args.target_max_len,
@ -127,6 +164,40 @@ def create_data_module_s2s(tokenizer: transformers.PreTrainedTokenizer, data_arg
)
def create_data_module_hub(tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments, do_train, do_eval, do_predict) -> typing.Dict:
try:
dataset = datasets.load_dataset(data_args.dataset)
except FileNotFoundError as ex:
raise ValueError(f"Error loading dataset from {data_args.dataset}, {ex}")
if do_eval or do_predict:
if 'eval' in dataset:
eval_dataset = dataset['eval']
else:
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
dataset = dataset.train_test_split(
test_size=data_args.eval_dataset_size, shuffle=True, seed=42
)
eval_dataset = dataset['test']
if 'train' in dataset:
train_dataset = dataset['train']
else:
train_dataset = dataset
data_collator = DataCollatorForCausalLMText(
tokenizer=tokenizer,
max_len=data_args.source_max_len,
)
return dict(
train_dataset=train_dataset if do_train else None,
eval_dataset=eval_dataset if do_eval else None,
predict_dataset=eval_dataset if do_predict else None,
data_collator=data_collator
)
def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments, do_train: bool, do_eval: bool, do_predict: bool) -> typing.Dict:
try:
dataset = datasets.load_dataset('text', data_files={'train': [data_args.dataset]})
@ -147,7 +218,8 @@ def create_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: D
eval_dataset = dataset['eval']
else:
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
dataset = dataset.train_test_split(
breakpoint()
dataset = dataset['train'].train_test_split(
test_size=data_args.eval_dataset_size, shuffle=True, seed=42
)
eval_dataset = dataset['test']