164 lines
4.9 KiB
C++
164 lines
4.9 KiB
C++
//
|
|
// SmartCrop - A tool for content aware croping of images
|
|
// Copyright (C) 2024 Carl Philipp Klemm
|
|
//
|
|
// This file is part of SmartCrop.
|
|
//
|
|
// SmartCrop is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// SmartCrop is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with SmartCrop. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
|
|
#include "facerecognizer.h"
|
|
#include <filesystem>
|
|
|
|
#define INCBIN_PREFIX r
|
|
#include "incbin.h"
|
|
|
|
INCBIN(defaultRecognizer, WEIGHT_DIR "/face_recognition_sface_2021dec.onnx");
|
|
INCBIN(defaultDetector, WEIGHT_DIR "/face_detection_yunet_2023mar.onnx");
|
|
|
|
#include <opencv2/dnn/dnn.hpp>
|
|
#include <opencv2/core.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
#include <fstream>
|
|
|
|
#include "log.h"
|
|
|
|
static const std::vector<unsigned char> onnx((unsigned char*)rdefaultDetectorData, ((unsigned char*)rdefaultDetectorData)+rdefaultDetectorSize);
|
|
|
|
FaceRecognizer::FaceRecognizer(std::filesystem::path recognizerPath, const std::filesystem::path& detectorPath, const std::vector<cv::Mat>& referances)
|
|
{
|
|
if(detectorPath.empty())
|
|
{
|
|
Log(Log::INFO)<<"Using builtin face detection model";
|
|
|
|
detector = cv::FaceDetectorYN::create("onnx", onnx, std::vector<unsigned char>(), {320, 320}, 0.6, 0.3, 5000, cv::dnn::Backend::DNN_BACKEND_OPENCV, cv::dnn::Target::DNN_TARGET_CPU);
|
|
if(!detector)
|
|
throw LoadException("Unable to load detector network from built in file");
|
|
}
|
|
else
|
|
{
|
|
detector = cv::FaceDetectorYN::create(detectorPath, "", {320, 320}, 0.6, 0.3, 5000, cv::dnn::Backend::DNN_BACKEND_OPENCV, cv::dnn::Target::DNN_TARGET_CPU);
|
|
if(!detector)
|
|
throw LoadException("Unable to load detector network from "+detectorPath.string());
|
|
}
|
|
|
|
bool defaultNetwork = recognizerPath.empty();
|
|
|
|
if(defaultNetwork)
|
|
{
|
|
Log(Log::INFO)<<"Using builtin face recognition model";
|
|
recognizerPath = cv::tempfile("onnx");
|
|
std::ofstream file(recognizerPath);
|
|
if(!file.is_open())
|
|
throw LoadException("Unable open temporary file at "+recognizerPath.string());
|
|
Log(Log::DEBUG)<<"Using "<<recognizerPath<<" as temporary file for onnx recongnition network";
|
|
file.write(reinterpret_cast<const char*>(rdefaultRecognizerData), rdefaultRecognizerSize);
|
|
file.close();
|
|
}
|
|
|
|
recognizer = cv::FaceRecognizerSF::create(recognizerPath.string(), "", cv::dnn::Backend::DNN_BACKEND_OPENCV, cv::dnn::Target::DNN_TARGET_CPU);
|
|
|
|
if(defaultNetwork)
|
|
std::filesystem::remove(recognizerPath);
|
|
|
|
if(!recognizer)
|
|
throw LoadException("Unable to load recognizer network from "+recognizerPath.string());
|
|
|
|
addReferances(referances);
|
|
}
|
|
|
|
cv::Mat FaceRecognizer::detectFaces(const cv::Mat& input)
|
|
{
|
|
detector->setInputSize(input.size());
|
|
cv::Mat faces;
|
|
detector->detect(input, faces);
|
|
return faces;
|
|
}
|
|
|
|
bool FaceRecognizer::addReferances(const std::vector<cv::Mat>& referances)
|
|
{
|
|
bool ret = false;
|
|
for(const cv::Mat& image : referances)
|
|
{
|
|
cv::Mat faces = detectFaces(image);
|
|
assert(faces.cols == 15);
|
|
if(faces.empty())
|
|
{
|
|
Log(Log::WARN)<<"A referance image provided dose not contian any face";
|
|
continue;
|
|
}
|
|
if(faces.rows > 1)
|
|
Log(Log::WARN)<<"A referance image provided contains more than one face, only the first detected face will be considered";
|
|
cv::Mat cropedImage;
|
|
recognizer->alignCrop(image, faces.row(0), cropedImage);
|
|
cv::Mat features;
|
|
recognizer->feature(cropedImage, features);
|
|
referanceFeatures.push_back(features.clone());
|
|
ret = true;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void FaceRecognizer::setThreshold(double threasholdIn)
|
|
{
|
|
threshold = threasholdIn;
|
|
}
|
|
|
|
double FaceRecognizer::getThreshold()
|
|
{
|
|
return threshold;
|
|
}
|
|
|
|
void FaceRecognizer::clearReferances()
|
|
{
|
|
referanceFeatures.clear();
|
|
}
|
|
|
|
FaceRecognizer::Detection FaceRecognizer::isMatch(const cv::Mat& input, bool alone)
|
|
{
|
|
cv::Mat faces = detectFaces(input);
|
|
|
|
Detection bestMatch;
|
|
bestMatch.confidence = 0;
|
|
bestMatch.person = -1;
|
|
|
|
if(alone && faces.rows > 1)
|
|
{
|
|
bestMatch.person = -2;
|
|
return bestMatch;
|
|
}
|
|
|
|
for(int i = 0; i < faces.rows; ++i)
|
|
{
|
|
cv::Mat face;
|
|
recognizer->alignCrop(input, faces.row(i), face);
|
|
cv::Mat features;
|
|
recognizer->feature(face, features);
|
|
features = features.clone();
|
|
for(size_t referanceIndex = 0; referanceIndex < referanceFeatures.size(); ++referanceIndex)
|
|
{
|
|
double score = recognizer->match(referanceFeatures[referanceIndex], features, cv::FaceRecognizerSF::FR_COSINE);
|
|
if(score > threshold && score > bestMatch.confidence)
|
|
{
|
|
bestMatch.confidence = score;
|
|
bestMatch.person = referanceIndex;
|
|
bestMatch.rect = cv::Rect(faces.at<int>(i, 0), faces.at<int>(i, 1), faces.at<int>(i, 2), faces.at<int>(i, 3));
|
|
}
|
|
}
|
|
}
|
|
|
|
return bestMatch;
|
|
}
|